RNA-binding proteins as versatile metabolic regulators

0
RNA-binding proteins as versatile metabolic regulators
  • Judge, A. & Dodd, M. S. Metabolism. Essays Biochem. 64, 607–647 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patil, N., Howe, O., Cahill, P. & Byrne, H. J. Monitoring and modelling the dynamics of the cellular glycolysis pathway: a review and future perspectives. Mol. Metabol. 66, 101635 (2022).

    Article 

    Google Scholar 

  • Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article 

    Google Scholar 

  • Zhou, X., Zhu, X. & Zeng, H. Fatty acid metabolism in adaptive immunity. FEBS J. 290, 584–599 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folmes, C. D. L., Dzeja, P. P., Nelson, T. J. & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folmes, C. D. L. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabol. 14, 264–271 (2011).

    Article 

    Google Scholar 

  • Varum, S. et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 6, e20914 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metabol. 21, 392–402 (2015).

    Article 

    Google Scholar 

  • Melcer, S. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 3, 910 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Khacho, M., Harris, R. & Slack, R. S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 20, 34–48 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chakrabarty, R. P. & Chandel, N. S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28, 394–408 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahat, A. & Gross, A. Mitochondrial plasticity in cell fate regulation. J. Biol. Chem. 294, 13852–13863 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prieto, J. et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 7, 11124 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katajisto, P. et al. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marikawa, Y. & Alarcón, V. B. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol. Reprod Dev. 76, 1019–1032 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bobori, S. N., Zhu, Y., Saarinen, A., Liuzzo, A. J. & Folmes, C. D. L. Metabolic remodeling during early cardiac lineage specification of pluripotent stem cells. Metabolites 13, 1086 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afzal, J. et al. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep. 40, 111146 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 17, 341–359 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Y. & Li, X. Metabolic and epigenetic regulation of endoderm differentiation. Trends Cell Biol. 32, 151–164 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hom, J. R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. & Scorrano, L. Mitochondrial Fusion Directs Cardiomyocyte Differentiation via Calcineurin and Notch Signaling. Science 342, 734–737 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Iworima, D. G. et al. Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells. Stem Cell Res. Ther. 15, 1 (2024).

  • Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, H. et al. The glucose transporter 2 regulates CD8+ T cell function via environment sensing. Nat. Metab. 5, 1969–1985 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cliff, T. S. et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell 21, 502–516.e9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaccarino, F. M., Ganat, Y., Zhang, Y. & Zheng, W. Stem cells in neurodevelopment and plasticity. Neuropsychopharmacol 25, 805–815 (2001).

    Article 

    Google Scholar 

  • Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5, e13374 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuhn, S., Gritti, L., Crooks, D. & Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells 8, 1424 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, V. T. S. et al. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions. PLoS ONE 12, e0182372 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berghoff, S. A., Spieth, L. & Saher, G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci. 45, 272–283 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sabogal-Guáqueta, A. M. et al. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat. Commun. 14, 6454 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnò, B. et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Urbán, N., Blomfield, I. M. & Guillemot, F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104, 834–848 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Otsuki, L. & Brand, A. H. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science 360, 99–102 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gengatharan, A. et al. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 184, 709–722.e13 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Navarro Negredo, P., Yeo, R. W. & Brunet, A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27, 202–223 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kalamakis, G. et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176, 1407–1419.e14 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Knobloch, M. et al. Metabolic control of adult neural stem cell activity by fasn-dependent lipogenesis. Nature 493, 226–230 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Knobloch, M. et al. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20, 2144–2155 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular gascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoll, E. A. et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Beckervordersandforth, R. et al. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560–573.e6 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrelli, F. et al. Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells. Sci. Adv. 9, eadd5220 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adusumilli, V. S. et al. ROS dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence. Cell Stem Cell 28, 300–314.e6 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wani, G. A. et al. Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L. Cell Rep. 38, 110370 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lauro, C., and Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol. 11, 493 (2020).

  • Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metabol. 30, 493–507.e6 (2019).

    Article 

    Google Scholar 

  • Cheng, S.-C. et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia 68, 1031–1045 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lim, S. A., Su, W., Chapman, N. M. & Chi, H. Lipid metabolism in T cell signaling and function. Nat. Chem. Biol. 18, 470–481 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet 22, 185–198 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat Rev Genet 15, 829–845 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, H., Xu, L., Wang, Z., Keene, J. & Gu, Z. Coordinating expression of RNA binding proteins with their mRNA targets. Sci. Rep. 4, 7175 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Horos, R. et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell 176, 1054–1067.e12 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Huppertz, I. et al. Riboregulation of enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol. Cell 82, 2666–2680.e11 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ho, J. J. D. et al. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Nat. Commun. 11, 2677 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cicchetto, A. C. et al. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep. 42, 112411 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, J. et al. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J. Cell Biol. 207, 213–223 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pla‐Martín, D. et al. CLUH granules coordinate translation of mitochondrial proteins with mTORC1 signaling and mitophagy. EMBO J. 39, e102731 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaninello, M. et al. CLUH maintains functional mitochondria and translation in motoneuronal axons and prevents peripheral neuropathy. Sci. Adv. 10, eadn2050 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, E. et al. Cluh plays a pivotal role during adipogenesis by regulating the activity of mitochondria. Sci. Rep .9, 6820 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harbauer, A. B. et al. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron 110, 1516–1531.e9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, W. et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 186, 80–97.e26 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dvir, S. et al. Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Rep. 35, 109198 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Stat3 activation is critical for pluripotency maintenance. J. Cell. Physiol. 234, 1044–1051 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Amaya, M. L. et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood 139, 584 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, Y. et al. STAT3 regulates mouse neural progenitor proliferation and differentiation by promoting mitochondrial metabolism. Front. Cell Dev. Biol. 8, 362 (2020)

  • Xu, Y. S. et al. STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate metabolism. Sci. Rep. 6, 39517 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, S. B. et al. Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia 35, 3371–3382 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shyh-Chang, N. et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778–792 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474–482 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trend Endocrinol. Metab. 26, 746–757 (2015).

    Article 

    Google Scholar 

  • Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guiducci, G. et al. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res. 47, 4240–4254 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monti, M. et al. Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Comput. Struct. Biotechnol. J. 19, 3034–3041 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spizzichino, S. et al. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol. Cell 84, 2682–2697.e6 (2024).

    Article 
    PubMed 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Post-transcriptional control by RNA-binding proteins in diabetes and its related complications. Front. Physiol. 13, 953880 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Advances in the study of RNA-binding proteins in diabetic complications. Mol. Metab. 62, 101515 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Potel, K. N. et al. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front. Cardiovasc. Med. 10, 1165302 (2023).

  • Goetzman, E. S. & Prochownik, E. V. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front. Endocrinol. 9, 129 (2018).

    Article 

    Google Scholar 

  • Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato, Y. et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13, 89 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat. Commun. 11, 3162 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote glycolysis. Mol. Cell 82, 542–554.e6 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat. Commun. 8, 15212 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat. Commun. 12, 3803 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, G. et al. DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Sig. Transduct. Target Ther. 7, 275 (2022).

    Article 

    Google Scholar 

  • Li, D. et al. Aging-induced tRNAGlu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab. 36, 1059–1075.e9 (2024).

    Article 
    PubMed 

    Google Scholar 

  • D’Amico, D. et al. The RNA-binding protein PUM2 impairs mitochondrial dynamics and mitophagy during aging. Mol. Cell 73, 775–787.e10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, W. et al. Restoration of CPEB4 prevents muscle stem cell senescence during aging. Dev. Cell 58, 1383–1398.e6 (2023).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *