Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health

0
Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health
  • Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleck, S. J. Body composition of elite American athletes. Am. J. Sports Med. 11, 398–403 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Potter, A. W., Chin, G. C., Looney, D. P. & Friedl, K. E. Defining overweight and obesity by percent body fat instead of body mass index. J. Clin. Endocrinol. Metab. (2024).

  • Cohen, P. & Kajimura, S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393–409 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karastergiou, K. & Fried, S. K. Multiple adipose depots increase cardiovascular risk via local and systemic effects. Curr. Atheroscler. Rep. 15, 361 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcelin, G., Silveira, A. L. M., Martins, L. B., Ferreira, A. V. M. & Clément, K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest. 129, 4032–4040 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Pellegrinelli, V., Carobbio, S. & Vidal-Puig, A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59, 1075–1088 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Favaretto, F., Bettini, S., Busetto, L., Milan, G. & Vettor, R. Adipogenic progenitors in different organs: pathophysiological implications. Rev. Endocr. Metab. Disord. 23, 71–85 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hollenberg, C. H. & Vost, A. Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J. Clin. Invest. 47, 2485–2498 (1968).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Ng, C. W., Poznanski, W. J., Borowiecki, M. & Reimer, G. Differences in growth in vitro of adipose cells from normal and obese patients. Nature 231, 445 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van, R. L., Bayliss, C. E. & Roncari, D. A. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J. Clin. Invest. 58, 699–704 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjorntorp, P. et al. Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J. Lipid Res. 19, 316–324 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marcelin, G. et al. A PDGFRα-mediated switch toward CD9high adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab. 25, 673–685 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, W., Zeve, D., Seo, J., Jo, A. Y. & Graff, J. M. Thiazolidinediones regulate adipose lineage dynamics. Cell Metab. 14, 116–122 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y., Berry, D. C., Tang, W. & Graff, J. M. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 9, 1007–1022 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenwald, M., Perdikari, A., Rülicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, M. et al. De novo adipocyte differentiation from Pdgfrβ+ preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat. Commun. 9, 890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emont, M. P. & Rosen, E. D. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr. Opin. Genet. Dev. 80, 102045 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat. Metab. 2, 97–109 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sárvári, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453.e5 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hepler, C. et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. Elife 7, e39636 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burl, R. B. et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309.e4 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palani, N. P. et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat. Metab. 5, 996–1013 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinte, L. C. et al. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature (2024).

  • Berry, D. C., Jiang, Y. & Graff, J. M. Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends Endocrinol. Metab. 27, 574–585 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, E. R. & Clark, E. L. Microscopic studies of the new formation of fat in living adult rabbits. Am. J. Anat. 67, 255–285 (1940).

    Article 

    Google Scholar 

  • Flemming, W. On the formation and regression of fat cells in connective tissue with comment on the structure of the latter. Arch. Mikrosk. Anat. 7, 32–35 (1871).

    Article 

    Google Scholar 

  • Loewe, L. Zur kenntnis des bindegewebes. Arch. Anat. Entwekngsgesch 43, 56 (1879).

    Google Scholar 

  • Chiari, H. The individuality of adipose tissue in pathology. Trans. Chic. Pathol. Soc. 8, 65–68 (1910).

    Google Scholar 

  • Toldt, C. Contribution to the histology and physiology of adipose tissue. Sitzber Akad. Wiss. Wien. Math. Naturwiss K1 62, 445–466 (1870).

    Google Scholar 

  • Ryan, T. J. & Curri, S. B. The development of adipose tissue and its relationship to the vascular system. Clin. Dermatol. 7, 1–8 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hausman, G. J., Hentges, E. J. & Thomas, G. B. Differentiation of adipose tissue and muscle in hypophysectomized pig fetuses. J. Anim. Sci. 64, 1255–1261 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poissonnet, C. M., Burdi, A. R. & Bookstein, F. L. Growth and development of human adipose tissue during early gestation. Early Hum. Dev. 8, 1–11 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poissonnet, C. M., Burdi, A. R. & Garn, S. M. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum. Dev. 10, 1–11 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hausman, G. J. & Richardson, R. L. Adrenergic innervation of fetal pig adipose tissue. Histochemical and ultrastructural studies. Acta Anat. 130, 291–297 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hausman, G. J. & Thomas, G. B. Structural and histochemical aspects of perirenal adipose tissue in fetal pigs: relationships between stromal-vascular characteristics and fat cell concentration and enzyme activity. J. Morphol. 190, 271–283 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ailhaud, G. P. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12, 207–233 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. H., Mottillo, E. P. & Granneman, J. G. Adipose tissue plasticity from WAT to BAT and in between. Biochim. Biophys. Acta 1842, 358–369 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iyama, K., Ohzono, K. & Usuku, G. Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 31, 143–155 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, J. et al. The spatiotemporal development of adipose tissue. Development 138, 5027–5037 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, K. Y. et al. Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142, 2623–2632 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tran, K.-V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, R., Jeffery, E. & Rodeheffer, M. S. Perspective weighing in on adipocyte precursors. Cell Metab. 19, 8–20 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCullough, A. W. Evidence of the macrophagal origin of adipose cells in the white rat as shown by studies on starved animals. J. Morphol. 75, 193–201 (1944).

    Article 

    Google Scholar 

  • Arner, P. & Rydén, M. The contribution of bone marrow-derived cells to the human adipocyte pool. Adipocyte 6, 187–192 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crossno, J. T., Majka, S. M., Grazia, T., Gill, R. G. & Klemm, D. J. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J. Clin. Invest. 116, 3220–3228 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majka, S. M. et al. De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proc. Natl Acad. Sci. USA 107, 14781–14786 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majka, S. M. et al. Adipose lineage specification of bone marrow-derived myeloid cells. Adipocyte 1, 215–229 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gavin, K. M. et al. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. FASEB J. 30, 1096–1108 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rydén, M. et al. Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab. 22, 408–417 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Tchoukalova, Y. D. et al. In vivo adipogenesis in rats measured by cell kinetics in adipocytes and plastic-adherent stroma-vascular cells in response to high-fat diet and thiazolidinedione. Diabetes 61, 137–144 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wasserman, F. Die Fettorgane des Menchen. Entwicklung, Bau und systematische Stellung des sogenannten Fettgewebes. Z. Zellforsch. 3, 235–328 (1926).

    Google Scholar 

  • Cinti, S., Cigolini, O. & Björntorp, P. A morphological study of the adipocyte precursor. J. Submicrosc. Cytol. 16, 243–251 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Napolitano, L. The differentiation of white adipose cells. An electron microscope study. J. Cell Biol. 18, 663–679 (1963).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vishvanath, L., Long, J. Z., Spiegelman, B. M. & Gupta, R. K. Do adipocytes emerge from mural progenitors? Cell Stem Cell 20, 585–586 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810–820 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guimarães-Camboa, N. & Evans, S. M. Are perivascular adipocyte progenitors mural cells or adventitial fibroblasts? Cell Stem Cell 20, 587–589 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, D. C., Stenesen, D., Zeve, D. & Graff, J. M. The developmental origins of adipose tissue. Development 140, 3939–3949 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lemos, D. R. et al. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cell 30, 1152–1162 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hudak, C. S. et al. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 8, 678–687 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. V., Deng, Y., Wang, Q. A., Sun, K. & Scherer, P. E. Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 151, 2933–2939 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. A. et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol. 17, 1099–1111 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeffery, E., Church, C. D., Holtrup, B., Colman, L. & Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17, 376–385 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao, M. et al. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol. Metab. 6, 111–124 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. et al. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151–158 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, R. K. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, R. K. et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15, 230–239 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chau, Y. et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 16, 367–375 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Gurmaches, J., Hsiao, W.-Y. & Guertin, D. A. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep. 4, 541–550 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sanchez-Gurmaches, J. & Guertin, D. A. Adipocyte lineages: tracing back the origins of fat. Biochim. Biophys. Acta – Mol. Basis Dis. 1842, 340–351 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ferrero, R., Rainer, P. & Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 30, 937–950 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeve, D., Tang, W. & Graff, J. Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell 5, 472–481 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Z., Daquinag, A. C., Su, F., Snyder, B. & Kolonin, M. G. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145, dev155861 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, C. et al. Mosaic mutant analysis identifies PDGFRα/PDGFRβ as negative regulators of adipogenesis. Cell Stem Cell 26, 707–721.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cattaneo, P. et al. Parallel lineage-tracing studies establish fibroblasts as the prevailing in vivo adipocyte progenitor. Cell Rep. 30, 571–582.e2 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, X. et al. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell 28, 1160–1176.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raajendiran, A. et al. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 27, 1528–1540.e7 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, D. S., Lee, B. & Doles, J. D. Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling. Life Sci. Alliance 2, e201900561 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, H. P. et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev. Cell 56, 1437–1451.e3 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stefkovich, M., Traynor, S., Cheng, L., Merrick, D. & Seale, P. Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis. Mol. Metab. 54, 101357 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahmgoong, H. et al. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab. 34, 458–472.e6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose-tissue immune and metabolic tenors. Sci. Immunol. 4, eaaw3658 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hepler, C. & Bass, J. Circadian mechanisms in adipose tissue bioenergetics and plasticity. Genes. Dev. 37, 454–473 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao, M. et al. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell 28, 685–701.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffolo, M. et al. Identification of a paracrine signaling mechanism linking CD34high progenitors to the regulation of visceral fat expansion and remodeling. Cell Rep. 29, 270–282.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrero, R. et al. A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion. Cell Metab. 36, 1566–1585.e9 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, H. et al. Identification of a regulatory pathway inhibiting adipogenesis via RSPO2. Nat. Metab. 4, 90–105 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, T. & Russell, T. R. Inhibition of adipose conversion in 3T3-L2 cells by retinoic acid. J. Supramol. Struct. 14, 255–266 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. M. et al. Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 434, 455–459 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zachara, M. et al. Mammalian adipogenesis regulator (Areg) cells use retinoic acid signalling to be non- and anti-adipogenic in age-dependent manner. EMBO J. 41, e108206 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corvera, S. Cellular heterogeneity in adipose tissues. Annu. Rev. Physiol. 83, 257–278 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Distinct functional properties of murine perinatal and adult adipose progenitor subpopulations. Nat. Metab. 4, 1055–1070 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahlakõiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan, B. et al. Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metab. 34, 783–799.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cannavino, J. & Gupta, R. K. Mesenchymal stromal cells as conductors of adipose tissue remodeling. Genes. Dev. 37, 781–800 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwayama, T. et al. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes. Dev. 29, 1106–1119 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Divoux, A. et al. Distinct subpopulations of human subcutaneous adipose tissue precursor cells revealed by single-cell RNA sequencing. Am. J. Physiol. Cell Physiol. 326, C1248–C1261 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faust, I. M., Johnson, P. R. & Hirsch, J. Noncompensation of adipose mass in partially lipectomized mice and rats. Am. J. Physiol. 231, 538–544 (1976).

    Article 

    Google Scholar 

  • Hedbacker, K. et al. Limitation of adipose tissue by the number of embryonic progenitor cells. Elife 9, e53074 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, P. R. & Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J. Lipid Res. 13, 2–11 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, Q. Q., Otto, T. C. & Daniel Lane, M. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl Acad. Sci. USA 100, 44–49 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 24, 142–150 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenwood, M. R. & Hirsch, J. Postnatal development of adipocyte cellularity in the normal rat. J. Lipid Res. 15, 474–483 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knittle, J. L. & Hirsch, J. Effect of early nutrition on the development of rat epididymal fat pads: cellularity and metabolism. J. Clin. Invest. 47, 2091–2098 (1968).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stiles, J. W., Francendese, A. A. & Masoro, E. J. Influence of age on size and number of fat cells in the epididymal depot. Am. J. Physiol. 229, 1561–1568 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hemmeryckx, B. et al. Age-associated adaptations in murine adipose tissues. Endocr. J. 57, 925–930 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Rigamonti, A., Brennand, K., Lau, F. & Cowan, C. A. Rapid cellular turnover in adipose tissue. PLoS ONE 6, e17637 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S. M. et al. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab. 20, 1049–1058 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neese, R. A. et al. Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc. Natl Acad. Sci. USA 99, 15345–15350 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strawford, A., Antelo, F., Christiansen, M. & Hellerstein, M. K. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 3104, 577–588 (2004).

    Article 

    Google Scholar 

  • White, U. A., Fitch, M. D., Beyl, R. A., Hellerstein, M. K. & Ravussin, E. Differences in in vivo cellular kinetics in abdominal and femoral subcutaneous adipose tissue in women. Diabetes 65, 1642–1647 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillermier, C. et al. Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI insight 2, e90349 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manolopoulos, K. N., Karpe, F. & Frayn, K. N. Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. 34, 949–959 (2010).

    Article 
    CAS 

    Google Scholar 

  • Vague, J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vague, J. Significance of obesity in medical practice. Mars Med 90, 179–189 (1953).

    CAS 
    PubMed 

    Google Scholar 

  • Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue-link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mejhert, N. & Rydén, M. Novel aspects on the role of white adipose tissue in type 2 diabetes. Curr. Opin. Pharmacol. 55, 47–52 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Snijder, M. B. et al. Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes. Res. 11, 104–111 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801, 338–349 (2010).

    Article 
    CAS 

    Google Scholar 

  • Klein, S., Gastaldelli, A., Yki-Järvinen, H. & Scherer, P. E. Why does obesity cause diabetes? Cell Metab. 34, 11–20 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagberg, C. E. & Spalding, K. L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 25, 270–289 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Yazıcı, D. & Sezer, H. Insulin resistance, obesity and lipotoxicity. Adv. Exp. Med. Biol. 960, 277–304 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Svedberg, J., Strömblad, G., Wirth, A., Smith, U. & Björntorp, P. Fatty acids in the portal vein of the rat regulate hepatic insulin clearance. J. Clin. Invest. 88, 2054–2058 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rytka, J. M., Wueest, S., Schoenle, E. J. & Konrad, D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes 60, 56–63 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jensen, M. D., Cardin, S., Edgerton, D. & Cherrington, A. Splanchnic free fatty acid kinetics. Am. J. Physiol. Endocrinol. Metab. 284, E1140–E1148 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 34, 1–11 (2013).

    Article 
    CAS 

    Google Scholar 

  • Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macotela, Y. et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61, 1691–1699 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz, L. S., Geras-Raaka, E. & Gershengorn, M. C. Heritability of fat accumulation in white adipocytes. Am. J. Physiol. Endocrinol. Metab. 307, E335–E344 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, K. Y. et al. Tbx15 defines a glycolytic subpopulation and white adipocyte heterogeneity. Diabetes 66, 2822–2829 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Item, F. & Konrad, D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes. Rev. 13, 30–39 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ding, H. et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat. Commun. 7, 11533 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, H. N. et al. Plasticity of adipose tissue in response to fasting and refeeding in male mice. Nutr. Metab. 14, 3 (2017).

    Article 

    Google Scholar 

  • Merlotti, C., Ceriani, V., Morabito, A. & Pontiroli, A. E. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. Int. J. Obes. 41, 672–682 (2017).

    Article 
    CAS 

    Google Scholar 

  • Camastra, S. & Ferrannini, E. Role of anatomical location, cellular phenotype and perfusion of adipose tissue in intermediary metabolism: a narrative review. Rev. Endocr. Metab. Disord. 23, 43–50 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch, J. & Han, P. W. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J. Lipid Res. 10, 77–82 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salans, L. B., Cushman, S. W. & Weismann, R. E. Studies of human adipose tissue adipose cell size and number in nonobese and obese patients. J. Clin. Invest. 52, 929–941 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch, J. & Batchelor, B. Adipose tissue cellularity in human obesity. Clin. Endocrinol. Metab. 5, 299–311 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreno-Castellanos, N. et al. The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism. Diabetologia 60, 324–335 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansson, B. et al. Adipose cell size changes are associated with a drastic actin remodeling. Sci. Rep. 9, 12941 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. I. et al. During adipocyte remodeling, lipid droplet configurations regulate insulin sensitivity through F-actin and G-actin reorganization. Mol. Cell. Biol. 39, e00210-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. & Spalding, K. L. The regulation of adipocyte growth in white adipose tissue. Front. cell Dev. Biol. 10, (2022).

  • Czech, M. P. Cellular basis of insulin insensitivity in large rat adipocytes. J. Clin. Invest. 57, 1523–1532 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olefsky, J. M. Effects of fasting on insulin binding, glucose transport, and glucose oxidation in isolated rat adipocytes: relationships between insulin receptors and insulin action. J. Clin. Invest. 58, 1450–1460 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, U. Studies of human adipose tissue in culture. I. Incorporation of glucose and release of glycerol. Anat. Rec. 172, 597–602 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jo, J. et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faust, I. M., Johnson, P. R., Stern, J. S. & Hirsch, J. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am. J. Physiol. 235, E279–E286 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arner, P. et al. Variations in the size of the major omentum are primarily determined by fat cell number. J. Clin. Endocrinol. Metab. 98, E897–E901 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Saavedra-Peña, R. D. M., Taylor, N., Flannery, C. & Rodeheffer, M. S. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep. 42, 112390 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steiner, B. M., Benvie, A. M., Lee, D., Jiang, Y. & Berry, D. C. Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner. Nat. Commun. 15, 6622 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. et al. Fibroblast growth factor 6 promotes adipocyte progenitor cell proliferation for adipose tissue homeostasis. Diabetes 72, 467–482 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujiwara, T., Yoshioka, S., Yoshioka, T., Ushiyama, I. & Horikoshi, H. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37, 1549–1558 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J.-Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arner, P. & Spalding, K. L. Biochemical and biophysical research communications fat cell turnover in humans. Biochem. Biophys. Res. Commun. 396, 101–104 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Maumus, M. et al. Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J. Clin. Endocrinol. Metab. 93, 4098–4106 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andersson, D. P., Arner, E., Hogling, D. E., Rydén, M. & Arner, P. Abdominal subcutaneous adipose tissue cellularity in men and women. Int. J. Obes. 41, 1564–1569 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA 107, 18226–18231 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffstedt, J. et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 53, 2496–2503 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A. & Smith, U. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 26, 193–200 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hardy, O. T. et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg. Obes. Relat. Dis. 7, 60–67 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Acosta, J. R. et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59, 560–570 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bäckdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 1869–1882.e6 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rydén, M., Andersson, D. P., Bergström, I. B. & Arner, P. Adipose tissue and metabolic alterations: regional differences in fat cell size and number matter, but differently: a cross-sectional study. J. Clin. Endocrinol. Metab. 99, E1870–E1876 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rabhi, N. et al. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci. Alliance 5, e202101286 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, S. et al. Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. Elife 9, e56189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. Z., Rabhi, N. & Farmer, S. R. Myocardin-related transcription factor a promotes recruitment of ITGA5+ profibrotic progenitors during obesity-induced adipose tissue fibrosis. Cell Rep. 23, 1977–1987 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan, B. et al. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nat. Metab. 2, 1332–1349 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcelin, G. et al. Autophagy inhibition blunts PDGFRA adipose progenitors’ cell-autonomous fibrogenic response to high-fat diet. Autophagy 16, 2156–2166 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carthy, J. M. TGFβ signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. J. Cell. Physiol. 233, 98–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDonald, M. E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160, 105–118 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Y. et al. BMP4 mediates the interplay between adipogenesis and angiogenesis during expansion of subcutaneous white adipose tissue. J. Mol. Cell Biol. 8, 302–312 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, S. W. et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl Acad. Sci. USA 110, E798–E807 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, J. M. et al. BMP4 gene therapy enhances insulin sensitivity but not adipose tissue browning in obese mice. Mol. Metab. 32, 15–26 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasegawa, Y. et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab. 27, 180–194.e6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 30, 174–189.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes. Dev. 22, 1397–1409 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harms, M. J. et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes. Dev. 29, 298–307 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163–167 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halberg, N. et al. Hypoxia-inducible factor 1 induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1 ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33, 904–917 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, K., Tordjman, J., Clément, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, E., Kim, J. B., Sarraf, P. & Spiegelman, B. M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274, 2100–2103 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joffin, N. et al. Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell 28, 702–717.e8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luong, Q., Huang, J. & Lee, K. Y. Deciphering white adipose tissue heterogeneity. Biology 8, 23 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sebo, Z. L., Jeffery, E., Holtrup, B. & Rodeheffer, M. S. A mesodermal fate map for adipose tissue. Dev 145, dev166801 (2018).

    Article 

    Google Scholar 

  • Lee, K. Y. et al. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 38, e99291 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Krueger, K. C., Costa, M. J., Du, H. & Feldman, B. J. Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Rep. 3, 1147–1158 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcelin, G., Gautier, E. L. & Clement, K. Adipose tissue fibrosis in obesity: etiology and challenges. Annu. Rev. Physiol. 84, 135–155 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Djian, P., Roncari, D. A. K. & Hollenberg, C. H. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J. Clin. Invest. 72, 1200–1208 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H., Kirkland, J. L. & Hollenberg, C. H. Varying capacities for replication of rat adipocyte precursor clones and adipose tissue growth. J. Clin. Invest. 83, 1741–1746 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sztalryd, C. & Faust, I. Depot-specific features of adipocyte progenitors revealed by primary cultures plated at low density. Int. J. Obes. 14, 165–175 (1990).

    PubMed 

    Google Scholar 

  • Grégoire, F., Todoroff, G., Hauser, N. & Remacle, C. The stroma-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol. Cell 69, 215–222 (1990).

    Article 
    PubMed 

    Google Scholar 

  • Hauner, H., Wabitsch, M. & Pfeiffer, E. F. Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm. Metab. Res. Suppl. 19, 35–39 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Maslowska, M. H., Sniderman, A. D., MacLean, L. D. & Cianflone, K. Regional differences in triacylglycerol synthesis in adipose tissue and in cultured preadipocytes. J. Lipid Res. 34, 219–228 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roncari, D. A. K., Lau, D. C. W. & Kindler, S. Exaggerated replication in culture of adipocyte precursors from massively obese persons. Metabolism 30, 425–427 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grégoire, F. M., Johnson, P. R. & Greenwood, M. R. Comparison of the adipoconversion of preadipocytes derived from lean and obese Zucker rats in serum-free cultures. Int. J. Obes. Relat. Metab. Disord. 19, 664–670 (1995).

    PubMed 

    Google Scholar 

  • Guilak, F. et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J. Cell. Physiol. 206, 229–237 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, J. B. et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cell 24, 376–385 (2006).

    Article 

    Google Scholar 

  • Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Planat-Benard, V. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109, 656–663 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Hong, L., Peptan, I. A., Colpan, A. & Daw, J. L. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs 183, 133–140 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holtrup, B. et al. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis. Adipocyte 6, 224–233 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Birsoy, K. et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development 138, 4709–4719 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crandall, D. L., Hausman, G. J. & Kral, J. G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4, 211–232 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knittle, J. L., Timmers, K., Ginsberg-Fellner, F., Brown, R. E. & Katz, D. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J. Clin. Invest. 63, 239–246 (1979).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersson, D. P. et al. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss. Diabetes Care 37, 1831–1836 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bjorntorp, P. et al. Effect of an energy-reduced dietary regimen in relation to adipose tissue cellularity in obese women. Am. J. Clin. Nutr. 28, 445–452 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, J. E. C. et al. The adipocyte acquires a fibroblast-like transcriptional signature in response to a high fat diet. Sci. Rep. 10, 2380 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roh, H. C. et al. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol. Metab. 42, 101086 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skurk, T., Alberti-Huber, C., Herder, C. & Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer, L. K., Ciaraldi, T. P., Henry, R. R., Wittgrove, A. C. & Phillips, S. A. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2, 217–226 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundgren, M. et al. Fat cell enlargement is an independent marker of insulin resistance and ‘hyperleptinaemia’. Diabetologia 50, 625–633 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, U. Effect of cell size on lipid synthesis by human adipose tissue in vitro. J. Lipid Res. 12, 65–70 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franck, N. et al. Insulin-induced GLUT4 translocation to the plasma membrane is blunted in large compared with small primary fat cells isolated from the same individual. Diabetologia 50, 1716–1722 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laurencikiene, J. et al. Regulation of lipolysis in small and large fat cells of the same subject. J. Clin. Endocrinol. Metab. 96, E2045–E2059 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Potts, J. L. et al. Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. Am. J. Physiol. 268, E588–E594 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Lecoutre, S. et al. Importance of the microenvironment and mechanosensing in adipose tissue biology. Cells 11, 2310 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. YAP and TAZ protect against white adipocyte cell death during obesity. Nat. Commun. 11, 5455 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pellegrinelli, V. et al. Human adipocyte function is impacted by mechanical cues. J. Pathol. 233, 183–195 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • El Ouarrat, D. et al. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 31, 162–173.e5 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, J. B. et al. Knockdown of Ant2 reduces adipocyte hypoxia and improves insulin resistance in obesity. Nat. Metab. 1, 86–97 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trayhurn, P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34, 207–236 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31, 375–390.e11 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lecoutre, S. et al. Glutamine metabolism in adipocytes: a bona fide epigenetic modulator of inflammation. Adipocyte 9, 620–625 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maqdasy, S. et al. Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nat. Metab. 4, 190–202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Böhm, A. et al. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals. PLoS ONE 9, e93148 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanzu, F. A. et al. Obesity rather than regional fat depots marks the metabolomic pattern of adipose tissue: an untargeted metabolomic approach. Obesity 22, 698–704 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schöttl, T., Kappler, L., Fromme, T. & Klingenspor, M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab. 4, 631–642 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schöttl, T. et al. Proteomic and metabolite profiling reveals profound structural and metabolic reorganization of adipocyte mitochondria in obesity. Obesity 28, 590–600 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lotta, L. A. et al. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat. Genet. 53, 54–64 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyazaki, Y. et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 87, 2784–2791 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franklin, R. M., Ploutz-Snyder, L. & Kanaley, J. A. Longitudinal changes in abdominal fat distribution with menopause. Metabolism 58, 311–315 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, S. R. et al. Understanding weight gain at menopause. Climacteric 15, 419–429 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lovejoy, J. C., Champagne, C. M., De Jonge, L., Xie, H. & Smith, S. R. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32, 949–958 (2008).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *