Pulling back the mitochondria’s iron curtain

0
Pulling back the mitochondria’s iron curtain
  • Anbar, A. D. Oceans. Elements and evolution. Science 322, 1481–1483 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goldford, J. E. et al. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e9 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muchowska, K. B., Varma, S. J. & Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104–107 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreini, C. et al. The human iron-proteome. Metallomics 10, 1223–1231 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lill, R., et al. Is there an answer? Why are mitochondria essential for life? IUBMB Life 57, 701–703 (2005).

  • Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. (2023).

  • Ward, D. M. & Cloonan, S. M. Mitochondrial Iron in Human Health and Disease. Annu. Rev. Physiol. 81, 453–482 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beinert, H., Holm, R. H. & Munck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ichiye, T. In Iron-Sulfur Clusters in Chemistry and Biology (ed. Tracey, R.) Ch. 2 (De Gruyter, 2014).

  • Bonomi, F. & Rouault, T. A. In Iron-Sulfur Clusters in Chemistry and Biology (ed. Tracey, R.) Ch. 1 (De Gruyter: Berlin, 2014).

  • Kennedy, M. C. et al. The role of iron in the activation-inactivation of aconitase. J. Biol. Chem. 258, 11098–11105 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527–559 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, L. et al. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc. Natl Acad. Sci. USA 90, 2754–2758 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, L. et al. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 13264–13272 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kispal, G. et al. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maio, N. & Rouault, T. A. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 8, 1032–1046 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naamati, A. et al. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J. Biol. Chem. 284, 30200–30208 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. S. et al. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients. Hum. Mol. Genet 27, 837–852 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, W. H. & Rouault, T. A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 3, 199–210 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weiler, B. D. et al. Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proc. Natl Acad. Sci. USA 117, 20555–20565 (2020).

  • Swenson, S. A. et al. From synthesis to utilization: the ins and outs of mitochondrial heme. Cells 9, 579 (2020).

  • Immenschuh, S. et al. Heme as a target for therapeutic interventions. Front. Pharm. 8, 146 (2017).

    Article 

    Google Scholar 

  • Gebicka, L. Redox reactions of heme proteins with flavonoids. J. Inorg. Biochem. 208, 111095 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rao, A. U. et al. Lack of heme synthesis in a free-living eukaryote. Proc. Natl Acad. Sci. USA 102, 4270–4275 (2005).

  • Stojanovski, B. M. et al. 5-Aminolevulinate synthase catalysis: the catcher in heme biosynthesis. Mol. Genet. Metab. 128, 178–189 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayeva, M. et al. ATP-binding cassette B10 regulates early steps of heme synthesis. Circ. Res. 113, 279–287 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hewton, K. G., Johal, A. S. & Parker, S. J. Transporters at the interface between cytosolic and mitochondrial amino acid metabolism. Metabolites 11, 112 (2021).

  • Yien, Y. Y. & Perfetto, M. Regulation of heme synthesis by mitochondrial homeostasis proteins. Front. Cell Dev. Biol. 10, 895521 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujiwara, T. & Harigae, H. Biology of heme in mammalian erythroid cells and related disorders. Biomed. Res. Int. 2015, 278536 (2015). p.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Obi, C. D. et al. Ferrochelatase: mapping the intersection of iron and porphyrin metabolism in the mitochondria. Front. Cell Dev. Biol. 10, 894591 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jhurry, N. D. et al. Biophysical investigation of the ironome of human jurkat cells and mitochondria. Biochemistry 51, 5276–5284 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rauen, U. et al. Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. Chembiochem 8, 341–352 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levi, S. et al. Mitochondrial ferritin: its role in physiological and pathological conditions. Cells 10, 1969 (2021).

  • Finazzi, D. & Arosio, P. Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch. Toxicol. 88, 1787–1802 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartnikas, T. B. et al. Characterization of mitochondrial ferritin-deficient mice. Am. J. Hematol. 85, 958–960 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 12, 447 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Mitochondrial ferritin deletion exacerbates beta-amyloid-induced neurotoxicity in mice. Oxid. Med. Cell Longev. 2017, 1020357 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Mitochondrial ferritin alleviates apoptosis by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral ischemia reperfusion. Redox Biol. 57, 102475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Z. H. et al. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson’s disease. Antioxid. Redox Signal 13, 783–796 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santambrogio, P. et al. Mitochondrial ferritin expression in adult mouse tissues. J. Histochem. Cytochem. 55, 1129–1137 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanatori, I. et al. Newly uncovered biochemical and functional aspects of ferritin. FASEB J. 37, e23095 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Plays, M., Muller, S. & Rodriguez, R. Chemistry and biology of ferritin. Metallomics 13, mfab021 (2021) .

  • Vercellino, I. & Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 23, 141–161 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braymer, J. J. & Lill, R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheffler, I. E. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J. Inherit. Metab. Dis. 38, 405–415 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gnandt, E. et al. The multitude of iron-sulfur clusters in respiratory complex I. Biochim. Biophys. Acta 1857, 1068–1072 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinton, T. V. et al. Molecular characteristics of proteins within the mitochondrial Fe-S cluster assembly complex. Micron 153, 103181 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mosegaard, S. et al. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol. Genet. Metab. 122, 182–188 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baik, A. H. et al. Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes. Mol. Cell 83, 942–960 e9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergner, M. et al. Model of the MitoNEET [2Fe-2S] cluster shows proton coupled electron transfer. J. Am. Chem. Soc. 139, 701–707 (2017).

  • Wang, Y., Landry, A. P. & Ding, H. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH(2) to oxygen or ubiquinone. J. Biol. Chem. 292, 10061–10067 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nechushtai, R. et al. CISD3/MiNT is required for complex I function, mitochondrial integrity, and skeletal muscle maintenance. Proc. Natl Acad. Sci. USA 121, e2405123121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, W. et al. Emerging role of TCA cycle-related enzymes in human diseases. Int. J. Mol. Sci. 22, 13057 (2021).

  • Maio, N., Heffner, A. L. & Rouault, T. A. Iron‑sulfur clusters in viral proteins: exploring their elusive nature, roles and new avenues for targeting infections. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119723 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCarthy, E. L. & Booker, S. J. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 358, 373–377 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dreishpoon, M. B. et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J. Biol. Chem. 299, 105046 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshi, P. R. et al. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J. Biol. Chem. 299, 105075 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulz, V. et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 19, 206–217 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Griffith, O. W. & Meister, A. Origin and turnover of mitochondrial glutathione. Proc. Natl Acad. Sci. USA 82, 4668–4672 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, X. et al. Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS. Nat. Commun. 13, 2483 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Autoregulatory control of mitochondrial glutathione homeostasis. Science 382, 820–828 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, X. et al. Dual regulation of SLC25A39 by AFG3L2 and iron controls mitochondrial glutathione homeostasis. Mol. Cell 84, 802–810 e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, G. et al. Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nat. Commun. 11, 6310 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dailey, H. A., Finnegan, M. G. & Johnson, M. K. Human ferrochelatase is an iron-sulfur protein. Biochemistry 33, 403–407 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, C. K. et al. The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat. Struct. Biol. 8, 156–160 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crooks, D. R. et al. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasquez-Trincado, C. et al. Adaptation of the heart to Frataxin depletion: evidence that integrated stress response can predominate over mTORC1 activation. Hum. Mol. Genet. 33, 637–654 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ast, T. et al. METTL17 is an Fe-S cluster checkpoint for mitochondrial translation. Mol. Cell 84, 359–374.e8 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atwal, P. S. & Scaglia, F. Molybdenum cofactor deficiency. Mol. Genet. Metab. 117, 1–4 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwarz, G. Molybdenum cofactor biosynthesis and deficiency. Cell Mol. Life Sci. 62, 2792–2810 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasnat, M. A. & Leimkuhler, S. Shared functions of Fe-S cluster assembly and Moco biosynthesis. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119731 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanzelmann, P. et al. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279, 34721–34732 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Oliphant, K. D. et al. Obtaining the necessary molybdenum cofactor for sulfite oxidase activity in the nematode Caenorhabditis elegans surprisingly involves a dietary source. J. Biol. Chem. 299, 102736 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Warnhoff, K. & Ruvkun, G. Molybdenum cofactor transfer from bacteria to nematode mediates sulfite detoxification. Nat. Chem. Biol. 15, 480–488 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suhm, T. & Ott, M. Mitochondrial translation and cellular stress response. Cell Tissue Res. 367, 21–31 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, J. et al. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit. Nucleic Acids Res. 40, 6097–6108 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, H. et al. BOLA3 and NFU1 link mitoribosome iron-sulfur cluster assembly to multiple mitochondrial dysfunctions syndrome. Nucleic Acids Res. 51, 11797–11812 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Itoh, Y. et al. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature 606, 603–608 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Itoh, Y. et al. Structure of the mitoribosomal small subunit with streptomycin reveals Fe-S clusters and physiological molecules. Elife 11, e77460 (2022).

  • Bassi, G., Sidhu, S. K. & Mishra, S. The expanding role of mitochondria, autophagy and lipophagy in steroidogenesis. Cells 10, 1851 (2021).

  • Midzak, A. & Papadopoulos, V. Adrenal mitochondria and steroidogenesis: from individual proteins to functional protein assemblies. Front. Endocrinol. 7, 106 (2016).

    Article 

    Google Scholar 

  • Li, J., Papadopoulos, V. & Vihma, V. Steroid biosynthesis in adipose tissue. Steroids 103, 89–104 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, M. et al. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 22, 12808 (2021).

  • Strushkevich, N. et al. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc. Natl Acad. Sci. USA 108, 10139–10143 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papadopoulos, V. & Miller, W. L. Role of mitochondria in steroidogenesis. Best. Pr. Res. Clin. Endocrinol. Metab. 26, 771–790 (2012).

    Article 
    CAS 

    Google Scholar 

  • Curnow, K. M. et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol. Endocrinol. 5, 1513–1522 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strushkevich, N. et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol. Endocrinol. 27, 315–324 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, P. C. et al. A mutation in CYP11B1 (Arg-448-His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J. Clin. Invest. 87, 1664–1667 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Curnow, K. M. et al. Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc. Natl Acad. Sci. USA 90, 4552–4556 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheftel, A. D. et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl Acad. Sci. USA 107, 11775–11780 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholls, P. & Kim, J. K. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can. J. Biochem. 60, 613–623 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enemark, J. H. Mechanistic complexities of sulfite oxidase: an enzyme with multiple domains, subunits, and cofactors. J. Inorg. Biochem. 247, 112312 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landry, A. P., Ballou, D. P. & Banerjee, R. Hydrogen sulfide oxidation by sulfide quinone oxidoreductase. Chembiochem 22, 949–960 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bender, D. et al. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency. J. Inherit. Metab. Dis. 43, 748–757 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vitvitsky, V. et al. Cytochrome c reduction by H(2)S potentiates sulfide signaling. ACS Chem. Biol. 13, 2300–2307 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, R. et al. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H(2)S oxidation. J. Biol. Chem. 298, 101435 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oyedotun, K. S., Sit, C. S. & Lemire, B. D. The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction. Biochim. Biophys. Acta 1767, 1436–1445 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brzezinski, P., Moe, A. & Adelroth, P. Structure and mechanism of respiratory III-IV supercomplexes in bioenergetic membranes. Chem. Rev. 121, 9644–9673 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. J. et al. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim. Biophys. Acta 1823, 1604–1616 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muhleip, A. et al. Structural basis of mitochondrial membrane bending by the I-II-III(2)-IV(2) supercomplex. Nature 615, 934–938 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1. Nature 392, 677–684 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajagukguk, S. et al. Effect of mutations in the cytochrome b ef loop on the electron-transfer reactions of the Rieske iron-sulfur protein in the cytochrome bc1 complex. Biochemistry 46, 1791–1798 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez-Mejias, G. et al. Cytochrome c: surfing off of the mitochondrial membrane on the tops of complexes III and IV. Comput. Struct. Biotechnol. J. 17, 654–660 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kranz, R. G. et al. Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 73, 510–528 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louie, G. V. & Brayer, G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J. Mol. Biol. 214, 527–555 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alvarez-Paggi, D. et al. Multifunctional cytochrome c: learning new tricks from an old dog. Chem. Rev. 117, 13382–13460 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshikawa, S., Muramoto, K. & Shinzawa-Itoh, K. Reaction mechanism of mammalian mitochondrial cytochrome c oxidase. Adv. Exp. Med. Biol. 748, 215–236 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsukihara, T. et al. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269, 1069–1074 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshikawa, S. et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723–1729 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsukihara, T. et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, 1136–1144 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wikstrom, M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266, 271–273 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marechal, A. et al. A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria. Proc. Natl Acad. Sci. USA 117, 9349–9355 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manicki, M. et al. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol. Cell 82, 4307–4323.e10 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta, M. J. et al. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta 1857, 1079–1085 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stenmark, P. et al. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J. Biol. Chem. 276, 33297–33300 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Behan, R. K. & Lippard, S. J. The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 49, 9679–9681 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rea, S. CLK-1/Coq7p is a DMQ mono-oxygenase and a new member of the di-iron carboxylate protein family. FEBS Lett. 509, 389–394 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCoy, J. G. et al. Structure of an ETHE1-like protein from Arabidopsis thaliana. Acta Crystallogr. D. Biol. Crystallogr. 62, 964–970 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Pettinati, I. et al. Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Hum. Mol. Genet. 24, 2458–2469 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hildebrandt, T. M. & Grieshaber, M. K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 275, 3352–3361 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sattler, S. A. et al. Characterizations of two bacterial persulfide dioxygenases of the metallo-beta-lactamase superfamily. J. Biol. Chem. 290, 18914–18923 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maio, N. et al. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin. Hematol. 58, 161–174 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, R. A. et al. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol. Cell 77, 645–655.e7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 8, e51031 (2019).

  • Teh, M. R., Armitage, A. E. & Drakesmith, H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol. Metab. 35, 1026–1049 (2024).

  • Iwai, K. Regulation of cellular iron metabolism: Iron-dependent degradation of IRP by SCF(FBXL5) ubiquitin ligase. Free Radic. Biol. Med. 133, 64–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hentze, M. W. et al. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Volz, K. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 18, 106–111 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster. Mol. Cell 78, 31–41 e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terzi, E. M. et al. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci. Adv. 7, eabg4302 (2021) .

  • Santana-Codina, N. & Mancias, J. D. The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals 11, 114 (2018).

  • Liu, M. Z. et al. The critical role of ferritinophagy in human disease. Front. Pharm. 13, 933732 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mancias, J. D. et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santana-Codina, N., Gikandi, A. & Mancias, J. D. The role of NCOA4-mediated ferritinophagy in ferroptosis. Adv. Exp. Med. Biol. 1301, 41–57 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuno, S. & Iwai, K. Oxygen modulates iron homeostasis by switching iron sensing of NCOA4. J. Biol. Chem. 299, 104701 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, H. et al. NCOA4 requires a [3Fe-4S] to sense and maintain the iron homeostasis. J. Biol. Chem. 300, 105612 (2024).

  • Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quiros, P. M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donnelly, N. et al. The eIF2alpha kinases: their structures and functions. Cell Mol. Life Sci. 70, 3493–3511 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toboz, P. et al. The amino acid sensor GCN2 controls red blood cell clearance and iron metabolism through regulation of liver macrophages. Proc. Natl Acad. Sci. USA 119, e2121251119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. C. et al. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416.e14 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ricketts, M. D. et al. The heme-regulated inhibitor kinase requires dimerization for heme-sensing activity. J. Biol. Chem. 298, 102451 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, P. et al. Viral evasion of PKR restriction by reprogramming cellular stress granules. Proc. Natl Acad. Sci. USA 119, e2201169119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munir, M. & Berg, M. The multiple faces of proteinkinase R in antiviral defense. Virulence 4, 85–89 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife 9, e49178 (2020).

  • Guo, X. et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579, 427–432 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fessler, E. et al. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579, 433–437 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sekine, Y. et al. A mitochondrial iron-responsive pathway regulated by DELE1. Mol. Cell 83, 2059–2076.e6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakrabarty, Y. et al. The HRI branch of the integrated stress response selectively triggers mitophagy. Mol. Cell 84, 1090–1100.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–1891.e7 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta 1790, 629–636 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, J. et al. Mitochondrial iron metabolism and its role in diseases. Clin. Chim. Acta 513, 6–12 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keita, M. et al. Friedreich ataxia: clinical features and new developments. Neurodegener. Dis. Manag. 12, 267–283 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Durr, A. et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tamaroff, J. et al. Friedreich’s ataxia related diabetes: epidemiology and management practices. Diab. Res. Clin. Pr. 186, 109828 (2022).

    Article 

    Google Scholar 

  • Rummey, C. et al. Scoliosis in Friedreich’s ataxia: longitudinal characterization in a large heterogeneous cohort. Ann. Clin. Transl. Neurol. 8, 1239–1250 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rojas, P. et al. Neuro-ophthalmological findings in Friedreich’s ataxia. J. Pers. Med. 11, 708 (2021).

  • Hanson, E. et al. Heart disease in Friedreich’s ataxia. World J. Cardiol. 11, 1–12 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monda, E. et al. Diagnosis and management of cardiovascular involvement in Friedreich ataxia. Heart Fail. Clin. 18, 31–37 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lynch, D. R., Perlman, S. & Schadt, K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev. Neurother. 24, 251–258 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Subramony, S. H. & Lynch, D. L. A milestone in the treatment of ataxias: approval of omaveloxolone for Friedreich ataxia. Cerebellum 23, 775–777 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ast, T. et al. Continuous, but not intermittent, regimens of hypoxia prevent and reverse ataxia in a murine model of Friedreich’s ataxia. Hum. Mol. Genet. 32, 2600–2610 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ast, T. et al. Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell 177, 1507–1521 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiabrando, D., Bertino, F. & Tolosano, E. Hereditary ataxia: a focus on heme metabolism and Fe-S cluster biogenesis. Int. J. Mol. Sci. 21, 3760 (2020).

  • Bekri, S. et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96, 3256–3264 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong, S. et al. The first case report of X-linked sideroblastic anemia with ataxia of Chinese origin and literature review. Front. Pediatr. 9, 692459 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pondarre, C. et al. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 109, 3567–3569 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maguire, A. et al. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br. J. Haematol. 115, 910–917 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boultwood, J. et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS ONE 3, e1970 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie, Z. et al. Expression, purification and microscopic characterization of human ATP-binding cassette sub-family B member 7 protein. Protein Expr. Purif. 183, 105860 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Q., Shen, Y. & Yang, X. Cryo-EM structure of AMP-PNP-bound human mitochondrial ATP-binding cassette transporter ABCB7. J. Struct. Biol. 214, 107832 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camaschella, C. Iron deficiency. Blood 133, 30–39 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. Elife 8, e46976 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, A. P. et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schultz, I. J. et al. Iron and porphyrin trafficking in heme biogenesis. J. Biol. Chem. 285, 26753–26759 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morimoto, Y. et al. Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia. Blood Adv. 6, 1100–1114 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, J. D. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 128, 164–177 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, M. A. et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J. Alzheimers Dis. 19, 363–372 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayton, S. et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain 140, 2112–2119 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Diouf, I. et al. Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying beta-amyloid pathology. Neurobiol. Dis. 124, 335–339 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ayton, S. et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun. 6, 6760 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hui, Y. et al. Long-term overexpression of heme oxygenase 1 promotes tau aggregation in mouse brain by inducing tau phosphorylation. J. Alzheimers Dis. 26, 299–313 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, W. et al. Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling. Front. Neurol. 10, 607 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Iron and targeted iron therapy in Alzheimer’s disease. Int. J. Mol. Sci. 24, 16353 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farr, A. C. & Xiong, M. P. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease, Parkinson’s disease, and intracerebral hemorrhage. Mol. Pharm. 18, 593–609 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, G. et al. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci. Lett. 455, 187–190 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayton, S. et al. Deferiprone in Alzheimer disease: a randomized clinical trial. JAMA Neurol. e243733 (2024).

  • Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engelhardt, E. & Gomes, M. D. M. Lewy and his inclusion bodies: discovery and rejection. Dement. Neuropsychol. 11, 198–201 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oakley, A. E. et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68, 1820–1825 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dexter, D. T. et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem. 52, 1830–1836 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gorell, J. M. et al. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45, 1138–1143 (1995). p.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedlich, A. L., Tanzi, R. E. & Rogers, J. T. The 5’-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol. Psychiatry 12, 222–223 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bharathi, S., Indi, S. & Rao, K. S. Copper- and iron-induced differential fibril formation in alpha-synuclein: TEM study. Neurosci. Lett. 424, 78–82 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castellani, R. J. et al. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 100, 111–114 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirata, Y. et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr. Biol. 33, 1282–1294 e5 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedrera, L. et al. Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Characterization of a patient-derived variant of GPX4 for precision therapy. Nat. Chem. Biol. 18, 91–100 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chen, C. et al. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J. Biol. Chem. 296, 100187 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Battaglia, A. M. et al. Ferroptosis and cancer: mitochondria meet the “iron maiden” cell death. Cells 9, 1505 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, H. et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 478, 838–844 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363.e3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, J. et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biol. 32, 101483 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *