Metagenomic estimation of dietary intake from human stool

Harding, J. E., Cormack, B. E., Alexander, T., Alsweiler, J. M. & Bloomfield, F. H. Advances in nutrition of the newborn infant. Lancet 389, 1660–1668 (2017).
Google Scholar
de Ridder, D., Kroese, F., Evers, C., Adriaanse, M. & Gillebaart, M. Healthy diet: health impact, prevalence, correlates, and interventions. Psychol. Health 32, 907–941 (2017).
Google Scholar
Clark, M., Hill, J. & Tilman, D. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 43, 109–134 (2018).
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
Google Scholar
Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).
Google Scholar
Gu, Y., Nieves, J. W., Stern, Y., Luchsinger, J. A. & Scarmeas, N. Food combination and Alzheimer disease risk: a protective diet. Arch. Neurol. 67, 699–706 (2010).
Google Scholar
Mente, A. et al. Diet, cardiovascular disease, and mortality in 80 countries. Eur. Heart J. 44, 2560–2579 (2023).
Google Scholar
Magkos, F., Hjorth, M. F. & Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 545–555 (2020).
Google Scholar
Key, T. J., Allen, N. E., Spencer, E. A. & Travis, R. C. The effect of diet on risk of cancer. Lancet 360, 861–868 (2002).
Google Scholar
Ludwig, D. S., Ebbeling, C. B. & Heymsfield, S. B. Improving the quality of dietary research. JAMA 322, 1549–1550 (2019).
Google Scholar
Molag, M. L. et al. Design characteristics of food frequency questionnaires in relation to their validity. Am. J. Epidemiol. 166, 1468–1478 (2007).
Google Scholar
Timon, C. M. et al. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr. Res. Rev. 29, 268–280 (2016).
Google Scholar
Conway, J. M., Ingwersen, L. A. & Moshfegh, A. J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J. Am. Diet. Assoc. 104, 595–603 (2004).
Google Scholar
Abu-Saad, K., Shahar, D. R., Vardi, H. & Fraser, D. Importance of ethnic foods as predictors of and contributors to nutrient intake levels in a minority population. Eur. J. Clin. Nutr. 64, S88–S94 (2010).
Google Scholar
Mozaffarian, D. & Forouhi, N. G. Dietary guidelines and health—Is nutrition science up to the task? Brit. Med. J. 360, k822 (2018).
Google Scholar
Taubes, G. Epidemiology faces its limits. Science 269, 164–169 (1995).
Google Scholar
Young, S. S. & Karr, A. Deming, data and observational studies. Signif. (Oxf.) 8, 116–120 (2011).
Sturgeon, C. M. et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 54, e11–e79 (2008).
Google Scholar
Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovasc. Res. 114, 35–52 (2018).
Google Scholar
Zuppinger, C. et al. Performance of the digital dietary assessment tool MyFoodRepo. Nutrients 14, 635 (2022).
Google Scholar
Mohanty, S. P. et al. The food recognition benchmark: using deep learning to recognize food in images. Front. Nutr. 9, 875143 (2022).
Google Scholar
Mortazavi, B. J. & Gutierrez-Osuna, R. A review of digital innovations for diet monitoring and precision nutrition. J. Diabetes Sci. Technol. 17, 217–223 (2023).
Google Scholar
Hassannejad, H. et al. Automatic diet monitoring: a review of computer vision and wearable sensor-based methods. Int. J. Food Sci. Nutr. 68, 656–670 (2017).
Google Scholar
West, K. A., Schmid, R., Gauglitz, J. M., Wang, M. & Dorrestein, P. C. foodMASST a mass spectrometry search tool for foods and beverages. NPJ Sci. Food 6, 22 (2022).
Google Scholar
Dorrestein, P. Metabolomics technologies for defining diet influences on brain metabolome and in Alzheimer’s disease. Alzheimers Dement. 18, e067277 (2022).
Petrone, B. L. et al. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc. Natl Acad. Sci. USA 120, e2304441120 (2023).
Google Scholar
Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count? Mol. Ecol. Resour. 13, 620–633 (2013).
Google Scholar
Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
Google Scholar
Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).
Google Scholar
Brent, M. R. How does eukaryotic gene prediction work? Nat. Biotechnol. 25, 883–885 (2007).
Google Scholar
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Google Scholar
Ounit, R., Wanamaker, S., Close, T. J. & Lonardi, S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16, 236 (2015).
Google Scholar
Shen, W. et al. KMCP: accurate metagenomic profiling of both prokaryotic and viral populations by pseudo-mapping. Bioinformatics 39, btac845 (2023).
Google Scholar
Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. Mbio 14, e0160723 (2023).
Google Scholar
Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).
Google Scholar
Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).
Srivastava, A. et al. Alignment and mapping methodology influence transcript abundance estimation. Genome Biol. 21, 239 (2020).
Google Scholar
Sun, Z. et al. Challenges in benchmarking metagenomic profilers. Nat. Methods 18, 618–626 (2021).
Google Scholar
Corbin, K. D. et al. Host–diet–gut microbiome interactions influence human energy balance: a randomized clinical trial. Nat. Commun. 14, 3161 (2023).
Google Scholar
Thompson, S. V. et al. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: a randomized controlled trial. J. Nutr. 151, 753–762 (2021).
Google Scholar
Asnicar, F. et al. Original research: blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 70, 1665 (2021).
Google Scholar
Duan, Y., Pi, Y., Li, C. & Jiang, K. An optimized procedure for detection of genetically modified DNA in refined vegetable oils. Food Sci. Biotechnol. 30, 129–135 (2021).
Google Scholar
Scollo, F. et al. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): comparison of isolation and amplification methodologies. Food Chem. 213, 388–394 (2016).
Google Scholar
Baumann-Dudenhoeffer, A. M., D’Souza, A. W., Tarr, P. I., Warner, B. B. & Dantas, G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat. Med. 24, 1822–1829 (2018).
Google Scholar
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
Google Scholar
Manore, M. M. Exercise and the Institute of Medicine recommendations for nutrition. Curr. Sports Med. Rep. 4, 193–198 (2005).
Google Scholar
Fromentin, S. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28, 303–314 (2022).
Google Scholar
Thomas, M. S., Calle, M. & Fernandez, M. L. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv. Nutr. 14, 44–54 (2023).
Google Scholar
Neuenschwander, M. et al. Substitution of animal-based with plant-based foods on cardiometabolic health and all-cause mortality: a systematic review and meta-analysis of prospective studies. BMC Medicine 21, 404 (2023).
Google Scholar
Embleton, N. D. Optimal protein and energy intakes in preterm infants. Early Hum. Dev. 83, 831–837 (2007).
Google Scholar
Uauy, R., Mena, P. & Valenzuela, A. Essential fatty acids as determinants of lipid requirements in infants, children and adults. Eur. J. Clin. Nutr. 53, S66–S77 (1999).
Google Scholar
Neis, F. A., de Costa, F., de Araújo, A. T. Jr., Fett, J. P. & Fett-Neto, A. G. Multiple industrial uses of non-wood pine products. Ind. Crops Prod. 130, 248–258 (2019).
Google Scholar
Wallick, D. Cellulose polymers in microencapsulation of food additives. In Microencapsulation in the Food Industry (eds Gaonkar A. et al.) 181–193 (Elsevier, 2014).
Li, N., Simon, J. E. & Wu, Q. Development of a scalable, high-anthocyanin and low-acidity natural red food colorant from Hibiscus sabdariffa L. Food Chem. 461, 140782 (2024).
Google Scholar
Ruxton, C. H. S., Gardner, E. J. & McNulty, H. M. Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit. Rev. Food Sci. Nutr. 50, 1–19 (2010).
Google Scholar
Crovetto, M. et al. Effect of healthy and unhealthy habits on obesity: a multicentric study. Nutrition 54, 7–11 (2018).
Google Scholar
Gibbons, S. M. et al. Perspective: leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv. Nutr. 13, 1450–1461 (2022).
Google Scholar
Lovegrove, J. A., Hodson, L., Sharma, S. & Lanham-New S. A. Nutrition Research Methodologies (John Wiley & Sons, 2015).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
Google Scholar
Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).
Google Scholar
Corbin, K. D. et al. Integrative and quantitative bioenergetics: design of a study to assess the impact of the gut microbiome on host energy balance. Contemp. Clin. Trials Commun. 19, 100646 (2020).
Google Scholar
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
link