Association of maternal dietary diversity during pregnancy and infant lower respiratory tract infections

0
Association of maternal dietary diversity during pregnancy and infant lower respiratory tract infections
  • Collaborators, G. L. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 1133–1161 (2017).

    Article 

    Google Scholar 

  • Nair, H. et al. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet 381, 1380–1390 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvi, S. S. & Barnes, P. J. Chronic obstructive pulmonary disease in non-smokers. Lancet 374, 733–743 (2009).

    Article 
    PubMed 

    Google Scholar 

  • James, K. M. et al. Risk of childhood asthma following infant bronchiolitis during the respiratory syncytial virus season. J. Allergy Clin. Immunol. 132, 227–229 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holt, P. G. & Sly, P. D. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat. Med. 18, 726–735 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • King, J. C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 71, 1218S–1225S (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dewey, K. G. Reducing stunting by improving maternal, infant and young child nutrition in regions such as South Asia: evidence, challenges and opportunities. Matern. Child Nutr. 12, 27–38 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, J. A. Dietary Guidelines for Americans, 2020–2025. Workplace Health Saf. 69, 395 (2021).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization & Joint FAO/WHO. Preparation and Use of Food-based Dietary Guidelines: Report of a Joint FAO/WHO Consultation, 114 (World Health Organization, 1998).

  • FAO and FHI 360. Minimum Dietary Diversity for Women: A Guide for Measurement (FAO, 2016).

  • Martin-Prével, Y. et al. Moving Forward on Choosing a Standard Operational Indicator of Women’s Dietary Diversity (FAO, 2015).

  • Jin, Y. et al. Dietary diversity and its associations with anemia among women of reproductive age in rural Odisha, India. Ecol. Food Nutr. 61, 304–318 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Teng, Y. et al. Maternal dietary diversity and birth weight in offspring: evidence from a Chinese population-based study. Int J. Environ. Res. Public Health 20, 3228 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madzorera, I. et al. Maternal dietary diversity and dietary quality scores in relation to adverse birth outcomes in Tanzanian women. Am. J. Clin. Nutr. 112, 695–706 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, C. et al. Cohort profile: The Tongji Maternal and Child Health Cohort (TMCHC). Int. J. Epidemiol. 52, e152–e161 (2022).

  • Zhang, H. et al. Reproducibility and relative validity of a semi-quantitative food frequency questionnaire for Chinese pregnant women. Nutr. J. 14, 56 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Institute of Nutrition and Food Safety CC. China Food Composition 2nd ed. (Peking University Medical Press, 2009).

  • Rammohan, A. et al. Maternal dietary diversity and odds of low birth weight: empirical findings from India. Women Health 59, 375–390 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cano-Ibanez, N. et al. Maternal dietary diversity and risk of small for gestational age newborn: findings from a case-control study. Clin. Nutr. 39, 1943–1950 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fung, T. T., Isanaka, S., Hu, F. B. & Willett, W. C. International food group-based diet quality and risk of coronary heart disease in men and women. Am. J. Clin. Nutr. 107, 120–129 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gicevic, S. et al. Evaluating pre-pregnancy dietary diversity vs. dietary quality scores as predictors of gestational diabetes and hypertensive disorders of pregnancy. PLoS ONE 13, e0195103 (2018).

    Article 

    Google Scholar 

  • Yang, J. et al. Dietary diversity and diet quality with gestational weight gain and adverse birth outcomes, results from a prospective pregnancy cohort study in urban Tanzania. Matern. Child Nutr. 18, e13300 (2022).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. ICD-11. Website cited, available: https://icd.who.int/en/.

  • Zhou, B., Coorperative Meta-Analysis Group Of China Obesity Task Force Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Zhonghua Liu Xing Bing Xue Za Zhi 23, 5–10 (2002).

    PubMed 

    Google Scholar 

  • Adu-Afarwuah, S., Lartey, A. & Dewey, K. G. Meeting nutritional needs in the first 1000 days: a place for small-quantity lipid-based nutrient supplements. Ann. NY Acad. Sci. 1392, 18–29 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Garofalo, R. Cytokines in human milk. J. Pediatr. 156, S36–S40 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duijts, L., Jaddoe, V. W., Hofman, A. & Moll, H. A. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics 126, e18–e25 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Arimond, M. et al. Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resource-poor settings. J. Nutr. 140, 2059S–2069S (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen, N., Sondergaard, J., Fisker, N. & Christesen, H. T. Infant respiratory tract infections or wheeze and maternal vitamin D in pregnancy: a systematic review. Pediatr. Infect. Dis. J. 36, 384–391 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hong, S. A. et al. Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism. World J. Pediatr. 13, 173–182 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haberg, S. E. et al. Folic acid supplements in pregnancy and early childhood respiratory health. Arch. Dis. Child. 94, 180–184 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loddo, F. et al. Association of maternal gestational vitamin D supplementation with respiratory health of young children. Nutrients 15, 2380 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vinod, A. et al. Association between maternal vitamin D status during late pregnancy and acute lower respiratory tract infections and acute diarrheal disease during infancy—a cohort study. Clin. Nutr. ESPEN 64, 411–417 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Ortega, R. M. Dietary guidelines for pregnant women. Public Health Nutr. 4, 1343–1346 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Narmaki, E. et al. Dietary diversity as a proxy measure of blood antioxidant status in women. Nutrition 31, 722–726 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, S., Agarwal, A., Banerjee, J. & Alvarez, J. G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet. Gynecol. Surv. 62, 335–347 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Al-Gubory, K. H., Fowler, P. A. & Garrel, C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J. Biochem. Cell Biol. 42, 1634–1650 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chavatte-Palmer, P., Al Gubory, K., Picone, O. & Heyman, Y. Maternal nutrition: effects on offspring fertility and importance of the periconceptional period on long-term development. Gynecol. Obstet. Fertil. 36, 920–929 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, Z. C. et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med. Hypotheses 66, 38–44 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Jasarevic, E. & Bale, T. L. Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front. Neuroendocrinol. 55, 100797 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ygberg, S. & Nilsson, A. The developing immune system—from foetus to toddler. Acta Paediatr. 101, 120–127 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *