Adversity, adiposity, nutrition and metabolic well-being in multi-ethnic Asia

0
Adversity, adiposity, nutrition and metabolic well-being in multi-ethnic Asia
  • NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article 

    Google Scholar 

  • NCD Risk Factor Collaboration. Repositioning of the global epicentre of non-optimal cholesterol. Nature 582, 73–77 (2020).

    Article 

    Google Scholar 

  • NCD Risk Factor Collaboration. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article 

    Google Scholar 

  • International Diabetes Federation. IDF Diabetes Atlas 10th edn (2021).

  • International Diabetes Federation. IDF Diabetes Atlas 9th edn (2019).

  • Naghavi, M. et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2100–2132 (2024).

    Article 

    Google Scholar 

  • Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results (2020).

  • Caleyachetty, R. et al. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a population-based cohort study. Lancet Diabetes Endocrinol. 9, 419–426 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McLaren, J. et al. Weight gain leads to greater adverse metabolic responses in South Asian compared with white European men: the GlasVEGAS study. Nat. Metab. 6, 1632–1645 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mina, T. et al. Adiposity and metabolic health in Asian populations: an epidemiological study using dual-energy X-ray absorptiometry in Singapore. Lancet Diabetes Endocrinol. 12, 704–715 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jamal, R. et al. Cohort Profile: The Malaysian Cohort (TMC) project: a prospective study of non-communicable diseases in a multi-ethnic population. Int. J. Epidemiol. 44, 423–431 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Vicks, W. S. et al. Prevalence of prediabetes and diabetes vary by ethnicity among U.S. Asian adults at healthy weight, overweight, and obesity ranges: an electronic health record study. BMC Public Health 22, 1954 (2022).

  • Fazli, G. S., Moineddin, R., Bierman, A. S. & Booth, G. L. Ethnic differences in prediabetes incidence among immigrants to Canada: a population-based cohort study. BMC Med. 17, 100 (2019).

  • NCD Risk Factor Collaboration. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).

    Article 

    Google Scholar 

  • Pischon, T. et al. General and abdominal adiposity and risk of death in europe. New Engl. J. Med. 359, 2105–2120 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, M. C. S. et al. Global, regional and time-trend prevalence of central obesity: a systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 35, 673–683 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, R. et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nazare, J.-A. et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am. J. Clin. Nutr. 96, 714–726 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hales, N. & Barker, D. J. P. The thrifty phenotype hypothesis. Br. Med. Bull. (2001).

  • Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuchenbaecker, K. et al. The transferability of lipid loci across African, Asian and European cohorts. Nat. Commun. 10, 4330 (2019).

  • Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627, 347–357 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. et al. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 30, 1065–1074 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell Genom. 3, 100408 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, T. et al. Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Med. 14, 70 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. The Health for Life in Singapore (HELIOS) Study: delivering precision medicine research for Asian populations. Nat. Commun. 17, 1 (2026).

    Article 

    Google Scholar 

  • Hodgson, S. et al. Genetic basis of early onset and progression of type 2 diabetes in South Asians. Nat. Med. 31, 323–331 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. et al. Structural variants in the Chinese population and their impact on phenotypes, diseases and population adaptation. Nat. Commun. 12, 6501 (2021).

  • Genomics England. Long-Read Genomic Data (2025).

  • Brauer, M. et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).

    Article 

    Google Scholar 

  • Parthasarathi, S. K., Hebbani, A. V. & Dharmavaram Desai, P. P. Vegetarian ethnic foods of South India: review on the influence of traditional knowledge. J. Ethn. Food. 9, 42 (2022).

    Article 

    Google Scholar 

  • Sasaki, S.; for Working Group 1 of the Healthy Diet Research Committee of International Life Sciences Institute, Japan. What is the scientific definition of the Japanese diet from the viewpoint of nutrition and health?. Nutr. Rev. 78, 18–26 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kim, S. H. et al. Korean diet: characteristics and historical background. J. Ethn. Food. 3, 26–31 (2016).

    Article 

    Google Scholar 

  • Ma, G. Food, eating behavior, and culture in Chinese society. J. Ethn. Food. 2, 195–199 (2015).

    Article 

    Google Scholar 

  • Harmayani, E. et al. Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal. J. Ethn. Food. 6, 1 (2019).

    Article 

    Google Scholar 

  • Imai, T. et al. Traditional Japanese Diet Score — association with obesity, incidence of ischemic heart disease, and healthy life expectancy in a global comparative study. J. Nutr. Health Aging 23, 717–724 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Results (2022).

  • Carioli, A., Schiavina, M. & Melchiorri, M. GHS-COUNTRY-STATS R2024A – GHSL country statistics by degree of urbanization, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) with major processing by Our World In Data (2024).

  • Roser, M., Ritchie, H. & Spooner, F. Burden of disease. Our World in Data (2021).

  • Mente, A. et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study. Lancet Diabetes Endocrinol. 5, 774–787 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harvard T.H. Chan School of Public Health. PURE study makes headlines, but the conclusions are misleading. The Nutrition Source (2017).

  • Mozaffarian, D. & Forouhi, N. G. Dietary guidelines and health – is nutrition science up to the task? BMJ 360, k822 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Miller, V. et al. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 3, 694–702 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imamura, F. et al. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health 3, e132–e142 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edefonti, V. et al. Reproducibility and validity of a posteriori dietary patterns: a systematic review. Adv. Nutr. 11, 293–326 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article 

    Google Scholar 

  • Lane, M. M. et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. BMJ 384, e077310 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendoza, K. et al. Ultra-processed foods and cardiovascular disease: analysis of three large US prospective cohorts and a systematic review and meta-analysis of prospective cohort studies. Lancet Reg. Health Am. 37, 100859 (2024).

  • Baker, P. et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obesity Rev. 21, e13126 (2020).

  • Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2023 (2023).

  • Touvier, M. et al. Ultra-processed foods and cardiometabolic health: public health policies to reduce consumption cannot wait. BMJ 383, e075294 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braesco, V. et al. Ultra-processed foods: how functional is the NOVA system? Eur. J. Clin. Nutr. 76, 1245–1253 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atanasova, P. et al. Food environments and obesity: a geospatial analysis of the South Asia Biobank, income and sex inequalities. SSM Popul. Health 17, 101055 (2022).

  • Gaupholm, J., Papadopoulos, A., Asif, A., Dodd, W. & Little, M. The influence of food environments on dietary behaviour and nutrition in Southeast Asia: a systematic scoping review. Nutr. Health 29, 231–253 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets. (2020).

  • Internal Displacement Monitoring Centre. 2023 Global Report on Internal Displacement. (2023).

  • Global Network Against Food Crises. Global Report Food Crises. (2023).

  • Nagpaul, T., Sidhu, D. & Chen, J. The Hunger Report: an in-Depth Look at Food Insecurity in Singapore. (2020).

  • Karanja, A., Ickowitz, A., Stadlmayr, B. & McMullin, S. Understanding drivers of food choice in low- and middle-income countries: a systematic mapping study. Glob. Food Sec. 32, 100615 (2022).

    Article 

    Google Scholar 

  • Mossenson, S. et al. The nutritional quality of food donated to a Western Australian Food Bank. Nutrients 16, 509 (2024).

  • Leung, C. W. et al. Food insecurity and ultra-processed food consumption: the modifying role of participation in the Supplemental Nutrition Assistance Program (SNAP). Am. J. Clin. Nutr. 116, 197–205 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, N. These low-income families want to eat fresh, healthy food but it’s becoming costlier and charities are strapped for donations. Channels New Asia (2024).

  • Pelham-Burn, S. E., Frost, C. J., Russell, J. M. & Barker, M. E. Improving the nutritional quality of charitable meals for homeless and vulnerable adults. A case study of food provision by a food aid organisation in the UK. Appetite 82, 131–137 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Daffu-O’Reilly, A. et al. Exploring the religious practice of langar as a route to health promotion in the Sikh community in Northern England: a qualitative study. J. Relig. Health (2024)

  • Eskandari, F., Lake, A. A., Rose, K., Butler, M. & O’Malley, C. A mixed-method systematic review and meta-analysis of the influences of food environments and food insecurity on obesity in high-income countries. Food Sci. Nutr. 10, 3689–3723 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, E. J., Chang, T., Leung, C., Ayanian, J. Z. & Nallamothu, B. K. Food insecurity among individuals with cardiovascular disease and cardiometabolic risk factors across race and ethnicity in 1999-2018. JAMA Cardiol. 7, 1218–1226 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phelps, N. H. et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403, 1027–1050 (2024).

    Article 

    Google Scholar 

  • Pourmotabbed, A. et al. Food insecurity and mental health: a systematic review and meta-analysis. Public Health Nutr. 23, 1778–1790 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blencowe, H. et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Glob. Health 7, e849–e860 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barker, D. J. In utero programming of chronic disease. Clin. Sci. 95, 115–128 (1998).

    Article 
    CAS 

    Google Scholar 

  • Fall, C. H. D. Non-industrialised countries and affluence. Br. Med. Bull. 60, 33–50 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Küpers, L. K. et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 10, 1893 (2019).

  • Yajnik, C. S. Early life origins of the epidemic of the double burden of malnutrition: life can only be understood backwards. Lancet Reg. Health Southeast Asia 28, 100453 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horikoshi, M. et al. Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248–252 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nongmaithem, S. S. et al. Babies of South Asian and European ancestry show similar associations with genetic risk score for birth weight despite the smaller size of South Asian newborns. Diabetes 71, 821–836 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Association of large for gestational age with cardiovascular metabolic risks: a systematic review and meta-analysis. Obesity 31, 1255–1269 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Do, W. L. et al. Epigenome-wide association study of diet quality in the Women’s Health Initiative and TwinsUK cohort. Int. J. Epidemiol. 50, 675–684 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraszczyk, E. et al. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia 65, 763–776 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agha, G. et al. Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 140, 645–657 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 127, 761–777 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayols-Baixeras, S. et al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum. Mol. Genet. 25, 4556–4565 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juvinao-Quintero, D. L., Sharp, G. C., Sanderson, E. C. M., Relton, C. L. & Elliott, H. R. Investigating causality in the association between DNA methylation and type 2 diabetes using bidirectional two-sample Mendelian randomisation. Diabetologia 66, 1247–1259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ott, R. et al. Epigenome-wide meta-analysis reveals associations between dietary glycemic index and glycemic load and DNA methylation in children and adolescents of different body sizes. Diabetes Care 46, 2067–2075 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lange de Luna, J. et al. Epigenome-wide association study of dietary fatty acid intake. Clin. Epigenetics 16, 29 (2024).

  • Loh, M. et al. Identification of genetic effects underlying type 2 diabetes in South Asian and European populations. Commun. Biol. 5, 329 (2022).

  • Reynolds, R. M. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis–2012 Curt Richter Award Winner. Psychoneuroendocrinology 38, 1–11 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lahti, M. et al. Maternal depressive symptoms during and after pregnancy and psychiatric problems in children. J. Am. Acad. Child Adolesc. Psychiatry 56, 30–39 (2017).

  • Yehuda, R. et al. Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J. Clin. Endocrinol. Metab. 90, 4115–4118 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seckl, J. R. Prenatal glucocorticoids and long-term programming. Eur. J. Endocrinol. 151, U49–U62 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chapman, K., Holmes, M. & Seckl, J. 11Β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 93, 1139–1206 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wyrwoll, C. S., Holmes, M. C. & Seckl, J. R. 11β-Hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front. Neuroendocrinol. 32, 265–286 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mina, T. H. T., Räikkönen, K., Riley, S. C. S., Norman, J. E. J. & Reynolds, R. M. R. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: role of obesity and sex. Psychoneuroendocrinology 59, 112–122 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharp, G. C. et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum. Mol. Genet. 26, 4067–4085 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Küupers, L. K. et al. Maternal dietary glycemic index and glycemic load in pregnancy and offspring cord blood DNA methylation. Diabetes Care 45, 1822–1832 (2022).

    Article 

    Google Scholar 

  • Howe, C. G. et al. Maternal gestational diabetes mellitus and newborn DNA methylation: mindings from the pregnancy and childhood epigenetics consortium. Diabetes Care 43, 98–105 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardenas, A. et al. Prenatal maternal antidepressants, anxiety, and depression and offspring DNA methylation: epigenome-wide associations at birth and persistence into early childhood. Clin. Epigenetics 11, 56 (2019).

  • Sharma, R. et al. Maternal–fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clin. Epigenetics 14, 87 (2022).

  • Kotsakis Ruehlmann, A. et al. Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation. Mol. Psychiatry 28, 5090–5100 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sammallahti, S. et al. Maternal anxiety during pregnancy and newborn epigenome-wide DNA methylation. Mol. Psychiatry 26, 1832–1845 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vehmeijer, F. O. L. et al. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med. 12, 105 (2020).

  • Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, P. R. et al. Nuclear regulatory disturbances precede and predict the development of type-2 diabetes in Asian populations. Preprint at medRxiv (2025).

  • McAllan, L. et al. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat. Commun. 14, 2784 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tinnion, R. et al. Preterm birth and subsequent insulin sensitivity: a systematic review. Arch. Dis. Child. 99, 362–368 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Finken, M. J. J., Van Der Voorn, B., Heijboer, A. C., De Waard, M. & Van Goudoever, J. B. Glucocorticoid programming in very preterm birth. Horm. Res. Paediatr. 85, 221–231 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ohuma, E. O. et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet 402, 1261–1271 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Grote, N. K. et al. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch. Gen. Psychiatry 67, 1012–1024 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article 
    PubMed Central 

    Google Scholar 

  • Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: Survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. Han, B. -G. & the KoGES group. Cohort profile: the Korean Genome and Epidemiology Study (KoGES) consortium. Int. J. Epidemiol. 46, e20 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Feng, Y. C. A. et al. Taiwan Biobank: a rich biomedical research database of the Taiwanese population. Cell Genom. 2, 100197 (2022).

  • Song, P. et al. Data Resource Profile: understanding the patterns and determinants of health in South Asians—the South Asia Biobank. Int. J. Epidemiol. 50, 717–718 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanaya, A. M. et al. Understanding the high prevalence of diabetes in U.S. South Asians compared with four racial/ethnic groups: the MASALA and MESA studies. Diabetes Care 37, 1621–1628 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nazare, J. A. et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: The International Study of Prediction of Intra-Abdominal Adiposity and its relationship withcardiometabolic risk/intra-abdominal adiposity. Am. J. Clin. Nutr. 96, 714–726 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, W. R. et al. Investigation of genetic variation underlying central obesity amongst South Asians. PLoS ONE 11, e0155478 (2016).

  • Low, D. Y. et al. Metabolic variation reflects dietary exposure in a multi-ethnic Asian population. Nat. Metab. 7, 1939–1954 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, E. et al. The Singapore National Precision Medicine Strategy. Nat. Genet. 55, 178–186 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, S. H. et al. Analysis of clinically relevant variants from ancestrally diverse Asian genomes. Nat. Commun. 13, 6694 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *