A legume-enriched diet improves metabolic health in prediabetes mediated through gut microbiome: a randomized controlled trial

0
A legume-enriched diet improves metabolic health in prediabetes mediated through gut microbiome: a randomized controlled trial
  • Khan, M. A. B. et al. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 10, 107–111 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabet. Res. Clin. Pract. 157, 107843 (2019).

  • Neuenschwander, M. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 366, l2368 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Esposito, K. et al. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine 47, 107–116 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kris-Etherton, P. M., Etherton, T. D., Carlson, J. & Gardner, C. Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in risk for cardiovascular disease. Curr. Opin. Lipido. 13, 397–407 (2002).

    Article 
    CAS 

    Google Scholar 

  • Shirani, F., Salehi-Abargouei, A. & Azadbakht, L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition 29, 939–947 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Koloverou, E., Esposito, K., Giugliano, D. & Panagiotakos, D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metabolism 63, 903–911 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esposito, K., Maiorino, M. I., Bellastella, G., Panagiotakos, D. B. & Giugliano, D. Mediterranean diet for type 2 diabetes: cardiometabolic benefits. Endocrine 56, 27–32 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martín-Peláez S., Fito M. & Castaner O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 12, 2236 (2020).

  • Liese, A. D., Nichols, M., Sun, X., Agostino, R. B. & Haffner, S. M. Adherence to the DASH Diet Is Inversely Associated With Incidence of Type 2 Diabetes: The Insulin Resistance Atherosclerosis Study. Diab. Care 32, 1434 (2009).

    Article 

    Google Scholar 

  • Azadbakht, L. et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) Eating Plan on Cardiovascular Risks Among Type 2 Diabetic Patients. Diab. Care 34, 55 (2011).

    Article 
    CAS 

    Google Scholar 

  • Campbell, A. P. DASH Eating Plan: An Eating Pattern for Diabetes Management. Diab. Spectr.: a Publ. Am. Diab. Assoc. 30, 76–81 (2017).

    Article 
    MATH 

    Google Scholar 

  • Garcia-Arellano, A. et al. Dietary inflammatory index and all-cause mortality in large cohorts: The SUN and PREDIMED studies. Clin. Nutr. 38, 1221–1231 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Okamoto, K. et al. Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus. Am. J. Hum. Genet 86, 54–64 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Villegas, R. et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 87, 162–167 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Becerra-Tomás, N. et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 37, 906–913 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Qian, F., Liu, G., Hu, F. B., Bhupathiraju, S. N. & Sun, Q. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 179, 1335–1344 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Toumpanakis, A., Turnbull, T. & Alba-Barba, I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diab. Res. amp; Care 6, e000534 (2018).

    Article 

    Google Scholar 

  • Chen, Z. et al. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Eur. J. Epidemiol. 33, 883–893 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chen, Z. et al. Changes in Plant-Based Diet Indices and Subsequent Risk of Type 2 Diabetes in Women and Men: Three U.S. Prospective Cohorts. Diab. Care 44, 663 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Jenkins, D. J. A. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch. Intern Med 172, 1653–1660 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pearce, M. et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J. Nutr. 151, 1231–1240 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Barclay, A. W. et al. Glycemic index, glycemic load, and chronic disease risk–a meta-analysis of observational studies. Am. J. Clin. Nutr. 87, 627–637 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zafar, M. I. et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am. J. Clin. Nutr. 110, 891–902 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1–8 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bi, X., Lim, J. & Henry, C. J. Spices in the management of diabetes mellitus. Food Chem. 217, 281–293 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Reynolds, A. N., Akerman, A. P. & Mann, J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 17, e1003053 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Sci. (N. Y., NY) 359, 1151–1156 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lynch, S. V. & Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med 375, 2369–2379 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fragiadakis, G. K. et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am. J. Clin. Nutr. 111, 1127–1136 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Chen, L. et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat. Med. 28, 2333–2343 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, H. et al. Ecological dynamics of the gut microbiome in response to dietary fiber. ISME J. 16, 2040–2055 (2022).

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165, 1332–1345 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D.-J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803.e797 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zheng X. et al. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat. Commun. 12, (2021).

  • Xue, H. et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circulat. Res. 131, 404–420 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Perera, T. et al. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Mol. Nutr. Food Res. 59, 795–806 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ruiz-Canela, M. et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 61, 1560–1571 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Martínez-González, M. A. et al. Yearly attained adherence to Mediterranean diet and incidence of diabetes in a large randomized trial. Cardiovasc. Diabetol. 22, 262 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Summers, C., Tobin, S. & Unwin, D. Evaluation of the Low Carb Program Digital Intervention for the Self-Management of Type 2 Diabetes and Prediabetes in an NHS England General Practice: Single-Arm Prospective Study. JMIR Diab. 6, e25751 (2021).

    Article 

    Google Scholar 

  • Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med 346, 393–403 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lindström, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368, 1673–1679 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Stentz, F. B. et al. Remission of pre-diabetes to normal glucose tolerance in obese adults with high protein versus high carbohydrate diet: randomized control trial. BMJ Open Diab. Res Care 4, e000258 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gravesteijn, E., Mensink, R. P. & Plat, J. The effects of long-term almond consumption on whole-body insulin sensitivity, postprandial glucose responses, and 48 h continuous glucose concentrations in males and females with prediabetes: a randomized controlled trial. Eur. J. Nutr. 62, 2661–2672 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dattilo, A. M. & Kris-Etherton, P. M. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am. J. Clin. Nutr. 56, 320–328 (1992).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pasanisi, F., Contaldo, F., de Simone, G. & Mancini, M. Benefits of sustained moderate weight loss in obesity. Nutr. Metab. Cardiovasc. Dis.: NMCD 11, 401–406 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Magkos, F. et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 23, 591–601 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ferreira H. et al. Impact of a daily legume-based meal on blood and anthropometric parameters in a group of omnivorous adults: A pilot study. Nutr. Bull. (2024).

  • Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H. & Winham, D. M. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis.: NMCD 21, 94–103 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abete, I., Parra, D. & Martinez, J. A. Legume-, fish-, or high-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J. Med Food 12, 100–108 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hermsdorff, H. H., Zulet, M., Abete, I. & Martínez, J. A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr. 50, 61–69 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tonstad, S., Malik, N. & Haddad, E. A high-fibre bean-rich diet versus a low-carbohydrate diet for obesity. J. Hum. Nutr. Diet. 27, 109–116 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Pittaway, J. K., Robertson, I. K. & Ball, M. J. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J. Am. Diet. Assoc. 108, 1009–1013 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, Z. et al. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 45, 765–775 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Abeysekara, S., Chilibeck, P. D., Vatanparast, H. & Zello, G. A. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br. J. Nutr. 108, S103–S110 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winham, D. M., Hutchins, A. M. & Johnston, C. S. Pinto bean consumption reduces biomarkers for heart disease risk. J. Am. Coll. Nutr. 26, 243–249 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Trinidad, T. P., Mallillin, A. C., Loyola, A. S., Sagum, R. S. & Encabo, R. R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 103, 569–574 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duane, W. C. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 38, 1120–1128 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hosseinpour-Niazi, S., Mirmiran, P., Fallah-Ghohroudi, A. & Azizi, F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br. J. Nutr. 114, 213–219 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rochfort, S. & Panozzo, J. Phytochemicals for Health, the Role of Pulses. J. Agric. Food Chem. 55, 7981–7994 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hosseinpour-Niazi, S. et al. Improvement of glycemic indices by a hypocaloric legume-based DASH diet in adults with type 2 diabetes: a randomized controlled trial. Eur. J. Nutr. 61, 3037–3049 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hosseinpour-Niazi S. et al. Improvement of glycemic indices by a hypocaloric legume-based DASH diet in adults with type 2 diabetes: a randomized controlled trial.

  • Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rinott, E. et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med 14, 29 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sowah, S. A. et al. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med 14, 30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Deehan, E. C. et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome 10, 77 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben-Yacov, O. et al. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 72, 1486–1496 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Shoer, S. et al. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat. Commun. 14, 5384 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tanes, C. et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 29, 394–407.e395 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hu, J. et al. Distinct signatures of gut microbiota and metabolites in different types of diabetes: a population-based cross-sectional study. EClinicalMedicine 62, 102132 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ren, Y. et al. Alterations in the Gut Microbiota in Pregnant Women with Pregestational Type 2 Diabetes Mellitus. mSystems 8, e0114622 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Natividad J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, (2018).

  • Fu, T. et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression. Cell Rep. 42, 112997 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raygoza Garay, J. A. et al. Gut Microbiome Composition Is Associated With Future Onset of Crohn’s Disease in Healthy First-Degree Relatives. Gastroenterology 165, 670–681 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhai, L. et al. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat. Commun. 14, 4986 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mookerjee, A. & Tanaka, T. Influence of enzymatic treatments on legume proteins for improved functional and nutritional properties: expansion of legume protein utilization as food ingredients. Curr. Opin. Food Sci. 49, 100974 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yuan, X. et al. Depression and anxiety in patients with active ulcerative colitis: crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes 13, 1987779 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newgard, C. B. et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 9, 311–326 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu D. et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 33, (2021).

  • Qiao, S. et al. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat. Metab. 4, 1271–1286 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kozieł K., & Urbanska E. M. Kynurenine Pathway in Diabetes Mellitus-Novel Pharmacological Target? Cells 12, (2023).

  • De Mello, V. D. et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 7, 46337 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venkatesh, M. et al. Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4. Immunity 41, 296–310 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, A. et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 175, 947–961.e917 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koh, A. et al. Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation. Cell Metab. 32, 643–653.e644 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, C. et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am. J. Clin. Nutr. 116, 1049–1058 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gradisteanu Pircalabioru G. et al. Snapshot into the Type-2-Diabetes-Associated Microbiome of a Romanian Cohort. Int. J. Mol. Sci. 23, (2022).

  • Park Y. E. et al. Effects of Lactobacillus plantarum Q180 on Postprandial Lipid Levels and Intestinal Environment: A Double-Blind, Randomized, Placebo-Controlled, Parallel Trial. Nutrients 12, (2020).

  • Zheng, Y., Ley, S. H. & Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Elsayed, N. A. et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diab. Care 47, S20–S42 (2024).

    Article 
    MATH 

    Google Scholar 

  • Lin, Y., Zhu, M. & Su, Z. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials. Contemp. Clin. Trials 45, 21–25 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Haldar, S. et al. Two Blends of Refined Rice Bran, Flaxseed, and Sesame Seed Oils Affect the Blood Lipid Profile of Chinese Adults with Borderline Hypercholesterolemia to a Similar Extent as Refined Olive Oil. J. Nutr. 150, 3141–3151 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Henry, C. J. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 8, 1133–1152 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lim, S. L. et al. Lifestyle Intervention Enabled by Mobile Technology on Weight Loss in Patients With Nonalcoholic Fatty Liver Disease: Randomized Controlled Trial. JMIR Mhealth Uhealth 8, e14802 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagströmer, M., Oja, P. & Sjöström, M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 9, 755–762 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • IPAQ Research Committee. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)—short and long forms. IPAQ accessed: June 2023

  • Minekus, M. et al. A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct. 5, 1113–1124 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Beghini F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 10, (2021).

  • Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinforma. (Oxf., Engl.) 35, 421–432 (2019).

    CAS 

    Google Scholar 

  • UniProt: a hub for protein information. Nucleic Acids Res. 43, D204-D212 (2015).

  • Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes – a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinforma. (Oxf., Engl.) 31, 1674–1676 (2015).

    CAS 

    Google Scholar 

  • Lukashin, A. V. & Borodovsky, M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26, 1107–1115 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma. (Oxf., Engl.) 22, 1658–1659 (2006).

    CAS 
    MATH 

    Google Scholar 

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinforma. (Oxf., Engl.) 36, 2251–2252 (2020).

    CAS 
    MATH 

    Google Scholar 

  • Vital, M., Howe, A. C. & Tiedje, J. M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5, e00889 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *