Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity

0
Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity
  • Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Schleh, M. W. et al. Metabolic dysfunction in obesity is related to impaired suppression of fatty acid release from adipose tissue by insulin. Obesity 31, 1347–1361 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Åkra, S. et al. Markers of remodeling in subcutaneous adipose tissue are strongly associated with overweight and insulin sensitivity in healthy non-obese men. Sci. Rep. 10, 14055 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, K., Tordjman, J., Clément, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clément, K. et al. Weight loss regulates inflammation‐related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004).

    Article 
    PubMed 

    Google Scholar 

  • McQuaid, S. E. et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60, 47–55 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Pelt, D. W., Guth, L. M. & Horowitz, J. F. Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. J. Appl. Physiol. 123, 1150–1159 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riis, S. et al. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J. Appl. Physiol. 126, 569–577 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fabre, O. et al. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 10, 1033–1050 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cullberg, K. B. et al. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects. Obesity 21, 454–460 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campbell, K. L. et al. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev. Res. (Phila.) 6, 217–231 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, C. et al. Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss. J. Physiol. 600, 2127–2146 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Christodoulides, C., Lagathu, C., Sethi, J. K. & Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 20, 16–24 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lowe, C. E., O’Rahilly, S. & Rochford, J. J. Adipogenesis at a glance. J. Cell Sci. 124, 2681–2686 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Melincovici, C. S. et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 59, 455–467 (2018).

    PubMed 

    Google Scholar 

  • Hato, T., Tabata, M. & Oike, Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 18, 6–14 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chun, T. H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chun, T.-H. et al. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59, 2484–2494 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Critical role of matrix metalloproteinase 14 in adipose tissue remodeling during obesity. Mol. Cell. Biol. 40, e00564-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bost, F., Aouadi, M., Caron, L. & Binétruy, B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51–56 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zewde, N., Gorham, R. D. Jr, Dorado, A. & Morikis, D. Quantitative modeling of the alternative pathway of the complement system. PLoS ONE 11, e0152337 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, Y. et al. A novel significance score for gene selection and ranking. Bioinformatics 30, 801–807 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engeli, S. et al. Regulation of the nitric oxide system in human adipose tissue. J. Lipid Res. 45, 1640–1648 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridnour, L. A. et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl Acad. Sci. USA 102, 13147–13152 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walton, R. G. et al. Insulin‐resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol. Rep. 3, e12415 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Čížková, T. et al. Exercise training reduces inflammation of adipose tissue in the elderly: cross-sectional and randomized interventional trial. J. Clin. Endocrinol. Metab. 105, e4510–e4526 (2020).

    Article 

    Google Scholar 

  • Li, L. et al. Exercise retards ongoing adipose tissue fibrosis in diet-induced obese mice. Endocr. Connect. 10, 325–335 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, G. et al. α3(V) collagen is critical for glucose homeostasis in mice due to effects in pancreatic islets and peripheral tissues. J. Clin. Invest. 121, 769–783 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Springer, N. L. et al. Obesity-associated extracellular matrix remodeling promotes a macrophage phenotype similar to tumor-associated macrophages. Am. J. Pathol. 189, 2019–2035 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spencer, M. et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 299, E1016–E1027 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruun, J. M., Helge, J. W., Richelsen, B. & Stallknecht, B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am. J. Physiol. Endocrinol. Metab. 290, E961–E967 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dieli-Conwright, C. M. et al. Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Res. Treat. 168, 147–157 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kawanishi, N., Yano, H., Yokogawa, Y. & Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105–118 (2010).

    PubMed 

    Google Scholar 

  • Kolahdouzi, S., Talebi-Garakani, E., Hamidian, G. & Safarzade, A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life Sci. 220, 32–43 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mamane, Y. et al. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 58, 2006–2017 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, Q., Morgan-Bathke, M. E. & Jensen, M. D. Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 319, E254–E264 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan-Bathke, M., Chen, L., Oberschneider, E., Harteneck, D. & Jensen, M. D. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity. Am. J. Physiol. Endocrinol. Metab. 308, E830–E846 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrago, E., Glennon, J. A. & Gordon, E. S. Comparative aspects of lipogenesis in mammalian tissues. Metabolism 20, 54–62 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ortega, F. J. et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity 18, 13–20 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diraison, F., Dusserre, E., Vidal, H., Sothier, M. & Beylot, M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am. J. Physiol. Endocrinol. Metab. 282, E46–E51 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rönn, T. et al. Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6‐month exercise intervention. Acta Physiol. (Oxf.) 211, 188–200 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Townsend, L. K., Knuth, C. M. & Wright, D. C. Cycling our way to fit fat. Physiol. Rep. 5, e13247 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69–84 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicholls, D. G. Hamster brown‐adipose‐tissue mitochondria: purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide binding site. Eur. J. Biochem. 62, 223–228 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalafi, M. et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients 12, 925 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanimura, R., Kobayashi, L., Shirai, T. & Takemasa, T. Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice. Physiol. Rep. 10, e15205 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vosselman, M. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes. 39, 1696–1702 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tsiloulis, T. et al. No evidence of white adipocyte browning after endurance exercise training in obese men. Int. J. Obes. 42, 721–727 (2018).

    Article 
    CAS 

    Google Scholar 

  • Komili, S., Farny, N. G., Roth, F. P. & Silver, P. A. Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557–571 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, G., Chen, J., Deng, Y., Sun, L. & Yan, Y. TMT labeling reveals the effects of exercises on the proteomic characteristics of the subcutaneous adipose tissue of growing high-fat-diet-fed rats. ACS Omega 8, 23484–23500 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, M. M. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louis, J. M., Agarwal, A., Aduri, R. & Talukdar, I. Global analysis of RNA–protein interactions in TNF‐α induced alternative splicing in metabolic disorders. FEBS Lett. 595, 476–490 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, P. et al. RNA-binding proteins in the regulation of adipogenesis and adipose function. Cells 11, 2357 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, S. et al. Human adipose stromal–vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures. Sci. Rep. 9, 7250 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, W. & Lazar, M. A. Modelling metabolic diseases and drug response using stem cells and organoids. Nat. Rev. Endocrinol. 18, 744–759 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, A. L. et al. Adipocyte NR1D1 dictates adipose tissue expansion during obesity. eLife 10, e63324 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendham, A. E. et al. Exercise training results in depot-specific adaptations to adipose tissue mitochondrial function. Sci. Rep. 10, 3785 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Short, K. R. et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888–1896 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prior, S. J. et al. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes 64, 3386–3395 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segal, K. R. et al. Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J. Appl. Physiol. 71, 2402–2411 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ross, R. et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial. Ann. Intern. Med. 133, 92–103 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrison, D. J. et al. Measurement of postprandial glucose fluxes in response to acute and chronic endurance exercise in healthy humans. Am. J. Physiol. Endocrinol. Metab. 314, E503–E511 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ryan, B. J. et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J. Clin. Endocrinol. Metab. 105, e2941–e2959 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karastergiou, K., Smith, S. R., Greenberg, A. S. & Fried, S. K. Sex differences in human adipose tissues–the biology of pear shape. Biol. Sex Differ. 3, 13 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verboven, K. et al. Adrenergically and non-adrenergically mediated human adipose tissue lipolysis during acute exercise and exercise training. Clin. Sci. 132, 1685–1698 (2018).

    Article 
    CAS 

    Google Scholar 

  • Godin, G. The Godin–Shephard Leisure-Time Physical Activity Questionnaire. Health Fit. J. Can. 4, 18–22 (2011).

    Google Scholar 

  • Balke, B. & Ware, R. W. An experimental study of physical fitness of Air Force personnel. U.S. Armed Forces Med. J. 10, 675–688 (1959).

    CAS 
    PubMed 

    Google Scholar 

  • Sieckmann, K. et al. AdipoQ—a simple, open-source software to quantify adipocyte morphology and function in tissues and in vitro. Mol. Biol. Cell 33, br22 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res. 48, e83 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuleshov, M. V. et al. KEA3: improved kinase enrichment analysis via data integration. Nucleic Acids Res. 49, W304–W316 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rojas-Rodriguez, R. et al. Adipose tissue angiogenesis assay. Methods Enzymol. 537, 75–91 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camastra, S. et al. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci. Rep. 7, 9007 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta, J. R. et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59, 560–570 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, C. & Horowitz, J. F. Years of endurance exercise training remodels abdominal subcutaneous adipose tissue in adults with overweight/obesity. Figshare (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *