Too old for healthy aging? Exploring age limits of longevity treatments
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
Google Scholar
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243–278 (2023).
Google Scholar
Kern, C. C. et al. C. elegans ageing is accelerated by a self-destructive reproductive programme. Nat. Commun. 14, 4381 (2023).
Google Scholar
Meyer, D. H. & Schumacher, B. Aging clocks based on accumulating stochastic variation. Nat. Aging 4, 871–885 (2024).
Google Scholar
Fang, Y. et al. Lifespan of long-lived growth hormone receptor knockout mice was not normalized by housing at 30 degrees C since weaning. Aging Cell 19, e13123 (2020).
Google Scholar
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Google Scholar
Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758 (2010).
Google Scholar
Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).
Google Scholar
Leiser, S. F., Fletcher, M., Begun, A. & Kaeberlein, M. Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1135–1144 (2013).
Google Scholar
Kumsta, C., Chang, J. T., Schmalz, J. & Hansen, M. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat. Commun. 8, 14337 (2017).
Google Scholar
Patrick, R. P. & Johnson, T. L. Sauna use as a lifestyle practice to extend healthspan. Exp. Gerontol. 154, 111509 (2021).
Google Scholar
Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28gamma-induced proteasomes. Nat. Aging 3, 546–566 (2023).
Google Scholar
Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span-from yeast to humans. Science 328, 321–326 (2010).
Google Scholar
Longo, V. D., Di Tano, M., Mattson, M. P. & Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 1, 47–59 (2021).
Google Scholar
Brandhorst, S. et al. Fasting-mimicking diet causes hepatic and blood markers changes indicating reduced biological age and disease risk. Nat. Commun. 15, 1309 (2024).
Google Scholar
Burger, J. M. & Promislow, D. E. Sex-specific effects of interventions that extend fly life span. Sci. Aging Knowl. Environ. 2004, pe30 (2004).
Google Scholar
Zeng, Y. et al. Sex Differences in Genetic Associations With Longevity. JAMA Netw. Open 1, e181670 (2018).
Google Scholar
Lushchak, O., Strilbytska, O. & Storey, K. B. Gender-specific effects of pro-longevity interventions in Drosophila. Mech. Ageing Dev. 209, 111754 (2023).
Google Scholar
Espada, L. et al. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat. Metab. 2, 1316–1331 (2020).
Google Scholar
Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).
Google Scholar
Sharifi, S. et al. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat. Commun. 15, 1702 (2024).
Google Scholar
Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).
Google Scholar
Templeman, N. M. & Murphy, C. T. Regulation of reproduction and longevity by nutrient-sensing pathways. J. Cell Biol. 217, 93–106 (2018).
Google Scholar
Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu Rev. Biochem 84, 435–464 (2015).
Google Scholar
Alavez, S. & Lithgow, G. J. Pharmacological maintenance of protein homeostasis could postpone age-related disease. Aging Cell 11, 187–191 (2012).
Google Scholar
Sun, N., Youle, R. J. & Finkel, T. The Mitochondrial Basis of Aging. Mol. Cell 61, 654–666 (2016).
Google Scholar
Imai, S. I. & Guarente, L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2, 16017 (2016).
Google Scholar
Hansen, M., Rubinsztein, D. C. & Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593 (2018).
Google Scholar
Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015).
Google Scholar
Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).
Google Scholar
Tavernarakis, N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 18, 228–235 (2008).
Google Scholar
Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).
Google Scholar
Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet 28, 139–145 (2001).
Google Scholar
McColl, G. et al. Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab. 12, 260–272 (2010).
Google Scholar
Murata, M. M. et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol. Biol. Cell 30, 2584–2597 (2019).
Google Scholar
Hamsanathan, S. et al. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. Sci. Adv. 8, eabl6083 (2022).
Google Scholar
Milanese, C. et al. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat. Commun. 10, 4887 (2019).
Google Scholar
Schroeder, H. T., De Lemos Muller, C. H., Heck, T. G., Krause, M. & Homem de Bittencourt, P. I. Jr. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 29, 175–200 (2024).
Google Scholar
Scior, A. et al. Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex. EMBO J. 37, 282–299 (2018).
Google Scholar
Zhou, X., Liao, W. J., Liao, J. M., Liao, P. & Lu, H. Ribosomal proteins: functions beyond the ribosome. J. Mol. Cell Biol. 7, 92–104 (2015).
Google Scholar
Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 312, 163–167 (1995).
Google Scholar
Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).
Google Scholar
Herbener, G. H. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J. Gerontol. 31, 8–12 (1976).
Google Scholar
Shigenaga, M. K., Hagen, T. M. & Ames, B. N. Oxidative damage and mitochondrial decay in aging. Proc. Natl Acad. Sci. USA 91, 10771–10778 (1994).
Google Scholar
Brown-Borg, H. M. et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell 13, 1019–1027 (2014).
Google Scholar
Longo, V. D. & Anderson, R. M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 185, 1455–1470 (2022).
Google Scholar
Yee, Z., Lim, S. H. Y., Ng, L. F. & Gruber, J. Inhibition of mTOR decreases insoluble proteins burden by reducing translation in C. elegans. Biogerontology 22, 101–118 (2021).
Google Scholar
Mugume, Y., Kazibwe, Z. & Bassham, D. C. Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. Int. J. Mol. Sci. 21 (2020).
Thomsson, E., Svensson, M. & Larsson, C. Rapamycin pre-treatment preserves viability, ATP level and catabolic capacity during carbon starvation of Saccharomyces cerevisiae. Yeast 22, 615–623 (2005).
Google Scholar
Zheng, X. et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife 5 (2016).
Pryor, R. et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell 178, 1299–1312 e1229 (2019).
Google Scholar
Wu, L. et al. An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer. Cell 167, 1705–1718 e1713 (2016).
Google Scholar
Weir, H. J. et al. Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling. Cell Metab. 26, 884–896 e885 (2017).
Google Scholar
Hahn, O. et al. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat. Metab. 1, 1059–1073 (2019).
Google Scholar
Ma, Z. et al. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. Elife 7 (2018).
Conley, K. E., Jubrias, S. A., Cress, M. E. & Esselman, P. Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp. Physiol. 98, 768–777 (2013).
Google Scholar
Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834 (2002).
Google Scholar
Tipton, C. M. The history of “Exercise Is Medicine” in ancient civilizations. Adv. Physiol. Educ. 38, 109–117 (2014).
Google Scholar
Lee, I. M. & Skerrett, P. J. Physical activity and all-cause mortality: what is the dose-response relation? Med Sci. Sports Exerc 33, S459–S471 (2001).
Google Scholar
Oguma, Y., Sesso, H. D., Paffenbarger, R. S. Jr. & Lee, I. M. Physical activity and all cause mortality in women: a review of the evidence. Br. J. Sports Med. 36, 162–172 (2002).
Google Scholar
Reimers, C. D., Knapp, G. & Reimers, A. K. Does physical activity increase life expectancy? A review of the literature. J. Aging Res. 2012, 243958 (2012).
Google Scholar
Campos, J. C. et al. Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics. Proc. Natl Acad. Sci. USA 120, e2204750120 (2023).
Google Scholar
Braga, R. R. et al. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPR(mt) in the hypothalamus of mice. Sci. Rep. 11, 3813 (2021).
Google Scholar
Gan, Z., Fu, T., Kelly, D. P. & Vega, R. B. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res. 28, 969–980 (2018).
Google Scholar
Menshikova, E. V. et al. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 61, 534–540 (2006).
Google Scholar
Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).
Google Scholar
Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665–8670 (2009).
Google Scholar
Coffey, V. G. & Hawley, J. A. The molecular bases of training adaptation. Sports Med. 37, 737–763 (2007).
Google Scholar
He, C., Sumpter, R. Jr. & Levine, B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 8, 1548–1551 (2012).
Google Scholar
Wang, Y. & Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 16, 132 (2017).
Google Scholar
Skiadas, P. K. & Lascaratos, J. G. Dietetics in ancient Greek philosophy: Plato’s concepts of healthy diet. Eur. J. Clin. Nutr. 55, 532–537 (2001).
Google Scholar
McDonald, R. B. & Ramsey, J. J. Honoring Clive McCay and 75 years of calorie restriction research. J. Nutr. 140, 1205–1210 (2010).
Google Scholar
Jaramillo, A. P. et al. Time-Restricted Feeding and Intermittent Fasting as Preventive Therapeutics: A Systematic Review of the Literature. Cureus 15, e42300, (2023).
Landry, M. J., Crimarco, A. & Gardner, C. D. Benefits of Low Carbohydrate Diets: a Settled Question or Still Controversial? Curr. Obes. Rep. 10, 409–422 (2021).
Google Scholar
Dowis, K. & Banga, S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 13 (2021).
Acosta-Rodriguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).
Google Scholar
Duking, T. et al. Ketogenic diet uncovers differential metabolic plasticity of brain cells. Sci. Adv. 8, eabo7639 (2022).
Google Scholar
Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M. & Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci. 19, 63–80 (2018).
Google Scholar
Lopez-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).
Google Scholar
Chen, K., Kobayashi, S., Xu, X., Viollet, B. & Liang, Q. AMP activated protein kinase is indispensable for myocardial adaptation to caloric restriction in mice. PLoS One 8, e59682 (2013).
Google Scholar
Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab. 29, 592–610 (2019).
Google Scholar
Hofer, S. J., Davinelli, S., Bergmann, M., Scapagnini, G. & Madeo, F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front. Nutr. 8, 717343 (2021).
Google Scholar
Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).
Google Scholar
Bridges, H. R. et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 379, 351–357 (2023).
Google Scholar
Ma, T. et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 603, 159–165 (2022).
Google Scholar
Martin-Rodriguez, S., de Pablos-Velasco, P. & Calbet, J. A. L. Mitochondrial Complex I Inhibition by Metformin: Drug-Exercise Interactions. Trends Endocrinol. Metab. 31, 269–271 (2020).
Google Scholar
Andrzejewski, S., Gravel, S. P., Pollak, M. & St-Pierre, J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2, 12 (2014).
Google Scholar
Slack, C., Foley, A. & Partridge, L. Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One 7, e47699 (2012).
Google Scholar
Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).
Google Scholar
Arnoux, I. et al. Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife 7 (2018).
Patil, S. P., Jain, P. D., Ghumatkar, P. J., Tambe, R. & Sathaye, S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277, 747–754 (2014).
Google Scholar
Ryu, Y. K. et al. Metformin regulates astrocyte reactivity in Parkinson’s disease and normal aging. Neuropharmacology 175, 108173 (2020).
Google Scholar
Kodali, M. et al. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 20, e13277 (2021).
Google Scholar
Yang, Y. et al. Metformin decelerates aging clock in male monkeys. Cell, (2024).
Kenyon, C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 9–16 (2011).
Google Scholar
Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).
Google Scholar
Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).
Google Scholar
Rogina, B., Reenan, R. A., Nilsen, S. P. & Helfand, S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290, 2137–2140 (2000).
Google Scholar
Zhang, Y. P. et al. Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat. Commun. 13, 6339 (2022).
Google Scholar
Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005).
Google Scholar
Junnila, R. K., List, E. O., Berryman, D. E., Murrey, J. W. & Kopchick, J. J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 9, 366–376 (2013).
Google Scholar
Duran-Ortiz, S. et al. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 20, e13506 (2021).
Google Scholar
Roy, C. et al. DAF-2/insulin IGF-1 receptor regulates motility during aging by integrating opposite signaling from muscle and neuronal tissues. Aging Cell 21, e13660 (2022).
Google Scholar
Duran-Ortiz, S., Noboa, V. & Kopchick, J. J. Tissue-specific disruption of the growth hormone receptor (GHR) in mice: An update. Growth Horm. IGF Res. 51, 1–5 (2020).
Google Scholar
Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4, e24 (2008).
Google Scholar
Gesing, A., Bartke, A., Wang, F., Karbownik-Lewinska, M. & Masternak, M. M. Key regulators of mitochondrial biogenesis are increased in kidneys of growth hormone receptor knockout (GHRKO) mice. Cell Biochem Funct. 29, 459–467 (2011).
Google Scholar
Mao, K. et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 9, 2394 (2018).
Google Scholar
Moliere, A. et al. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. Geroscience 46, 5015–5036 (2024).
Google Scholar
Venz, R., Pekec, T., Katic, I., Ciosk, R. & Ewald, C. Y. End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies. Elife 10 (2021).
Zhang, W. B., Ye, K., Barzilai, N. & Milman, S. The antagonistic pleiotropy of insulin-like growth factor 1. Aging Cell 20, e13443 (2021).
Google Scholar
Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).
Google Scholar
Kim, M. Y., Zhang, T. & Kraus, W. L. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19, 1951–1967 (2005).
Google Scholar
Mouchiroud, L. et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154, 430–441 (2013).
Google Scholar
Stein, L. R. & Imai, S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33, 1321–1340 (2014).
Google Scholar
Igarashi, M. et al. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. NPJ Aging 8, 5 (2022).
Google Scholar
Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).
Google Scholar
Campbell, J. M. Supplementation with NAD(+) and Its Precursors to Prevent Cognitive Decline across Disease Contexts. Nutrients 14 (2022).
Abdellatif, M., Sedej, S. & Kroemer, G. NAD(+) Metabolism in Cardiac Health, Aging, and Disease. Circulation 144, 1795–1817 (2021).
Google Scholar
Fang, E. F. et al. NAD(+) in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med 23, 899–916 (2017).
Google Scholar
Mitchell, S. J. et al. Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metab. 27, 667–676 e664 (2018).
Google Scholar
Vreones, M. et al. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell 22, e13754 (2023).
Google Scholar
Xie, X. et al. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer’s disease model mice. Metab. Brain Dis. 34, 353–366 (2019).
Google Scholar
de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).
Google Scholar
Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).
Google Scholar
Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).
Google Scholar
Law, B. K. Rapamycin: an anti-cancer immunosuppressant? Crit. Rev. Oncol. Hematol. 56, 47–60 (2005).
Google Scholar
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).
Google Scholar
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
Google Scholar
Fernandes, S. A. & Demetriades, C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. Front. Aging 2, 707372 (2021).
Google Scholar
Guo, X. et al. Rapamycin extenuates experimental colitis by modulating the gut microbiota. J. Gastroenterol. Hepatol. 38, 2130–2141 (2023).
Google Scholar
Schinaman, J. M., Rana, A., Ja, W. W., Clark, R. I. & Walker, D. W. Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila. Sci. Rep. 9, 7824 (2019).
Google Scholar
Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).
Google Scholar
Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724 (2012).
Google Scholar
Selvarani, R., Mohammed, S. & Richardson, A. Effect of rapamycin on aging and age-related diseases-past and future. Geroscience 43, 1135–1158 (2021).
Google Scholar
Quarles, E. et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 19, e13086 (2020).
Google Scholar
Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 5 (2016).
Powers, T. & Walter, P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 987–1000 (1999).
Google Scholar
Zaragoza, D., Ghavidel, A., Heitman, J. & Schultz, M. C. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell Biol. 18, 4463–4470 (1998).
Google Scholar
Martinez Corrales, G. et al. Partial Inhibition of RNA Polymerase I Promotes Animal Health and Longevity. Cell Rep. 30, 1661–1669 e1664 (2020).
Google Scholar
Javidnia, S. et al. Mendelian randomization analyses implicate biogenesis of translation machinery in human aging. Genome Res 32, 258–265 (2022).
Google Scholar
link