The effects of type 1 and type 2 diabetes mellitus on bone health in chronic kidney disease

0
The effects of type 1 and type 2 diabetes mellitus on bone health in chronic kidney disease
  • Sun, H. et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Fan, Y., Wei, F., Lang, Y. & Liu, Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos. Int. 27, 219–228 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos. Int. 18, 427–444 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dytfeld, J. & Michalak, M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin. Exp. Res. 29, 301–309 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Yamamoto, M., Yamaguchi, T., Yamauchi, M., Kaji, H. & Sugimoto, T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J. Bone Miner. Res. 24, 702–709 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moayeri, A. et al. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther. Clin. Risk Manag. 13, 455–468 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vilaca, T. et al. The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: a systematic review and meta-analysis update. Bone 137, 115457 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Schwartz, A. V. Epidemiology of fractures in type 2 diabetes. Bone 82, 2–8 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Weber, D. R., Haynes, K., Leonard, M. B., Willi, S. M. & Denburg, M. R. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38, 1913–1920 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, B. et al. Unmasking fracture risk in type 2 diabetes: the association of longitudinal glycemic hemoglobin level and medications. J. Clin. Endocrinol. Metab. 107, e1390–e1401 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Draghici, A. E., Zahedi, B., Taylor, J. A., Bouxsein, M. L. & Yu, E. W. Vascular deficits contributing to skeletal fragility in type 1 diabetes. Front. Clin. Diabetes Healthcare 4, (2023).

  • Elger, M., Parpia, A. S. & Whitham, D. in Nutrition in Kidney Disease (eds Burrowes J. D., Kovesdy, C. P. & Byham-Gray L. D.) 175–196 (Springer, 2020).

  • Ketteler, M. et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int. 92, 26–36 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Malluche, H. H., Davenport, D. L., Lima, F. & Monier-Faugere, M. C. Prevalence of low bone formation in untreated patients with osteoporosis. PLoS ONE 17, e0271555 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hygum, K., Starup-Linde, J., Harslof, T., Vestergaard, P. & Langdahl, B. L. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur. J. Endocrinol. 176, R137–R157 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patsch, J. M. et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 28, 313–324 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Meier, C. et al. Biochemical markers of bone fragility in patients with diabetes. J. Clin. Endocrinol. Metab. 108, e923–e936 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lekkala, S. et al. Increased advanced glycation endproducts, stiffness, and hardness in iliac crest bone from postmenopausal women with type 2 diabetes mellitus on insulin. J. Bone Miner. Res. 38, 261–277 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stenderup, K., Justesen, J., Clausen, C. & Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33, 919–926 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Piccoli, A. et al. Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with type 2 diabetes. J. Bone Miner. Res. 35, 2415–2422 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, J., Brismar, K., Nyrén, O., Ugarph-Morawski, A. & Ye, W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28, 2850–2855 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Shanbhogue, V. V. et al. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J. Bone Miner. Res. 30, 2188–2199 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brockstedt, H., Kassem, M., Eriksen, E. F., Mosekilde, L. & Melsen, F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14, 681–691 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shah, V. N. et al. Type 1 diabetes onset at young age is associated with compromised bone quality. Bone 123, 260–264 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1386 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, J. J. Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schweiger, B. M., Snell-Bergeon, J. K., Roman, R., McFann, K. & Klingensmith, G. J. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reprod. Biol. Endocrinol. : RBE 9, 61 (2011).

    Article 

    Google Scholar 

  • Deltsidou, A. Age at menarche and menstrual irregularities of adolescents with type 1 diabetes. J. Pediatr. Adolesc. Gynecol. 23, 162–167 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Thong, E. P. et al. Increased prevalence of fracture and hypoglycaemia in young adults with concomitant type 1 diabetes mellitus and coeliac disease. Clin. Endocrinol. 88, 37–43 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mitri, J. & Pittas, A. G. Vitamin D and diabetes. Endocrinol. Metab. Clin. North. Am. 43, 205–232 (2014).

    Article 
    PubMed 

    Google Scholar 

  • He, X. et al. Parathyroid hormone is negatively correlated with glycated hemoglobin in newly diagnosed type 2 diabetic patients. Int. J. Endocrinol. 2024, 8414689 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ANZDATA Registry. Prevalence of Kidney Failure with Replacement Therapy. 44th Report, Chapter 2. Australia and New Zealand Dialysis and Transplant Registry (2021).

  • Asamiya, Y., Tsuchiya, K. & Nitta, K. Role of sclerostin in the pathogenesis of chronic kidney disease-mineral bone disorder. Ren. Replacement Ther. 2, 8 (2016).

    Article 

    Google Scholar 

  • Lewiecki, E. M. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis. 6, 48–57 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naylor, K. L. et al. Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin. J. Am. Soc. Nephrol. 10, 646–653 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naylor, K. L. et al. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 86, 810–818 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Tentori, F. et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 85, 166–173 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Neal, B., Perkovic, V. & Matthews, D. R. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 2099 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Young, T. K. et al. Risk factors for fracture in patients with coexisting chronic kidney disease and type 2 diabetes: an observational analysis from the CREDENCE trial. J. Diabetes Res. 2022, 9998891 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aleksova, J., Ebeling, P., Milat, F. & Elder, G. DXA-derived advanced hip analysis and the trabecular bone score in end stage kidney disease secondary to type 1 diabetes. Eur. J. Endocrinol. 187, 883–892 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cannata-Andía, J. B., Rodriguez García, M. & Gómez Alonso, C. Osteoporosis and adynamic bone in chronic kidney disease. J. Nephrol. 26, 73–80 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hutchison, A. J. et al. Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int. 44, 1071–1077 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Modest, J. M., Sheth, H., Gohh, R. & Aaron, R. K. Osteomalacia and renal osteodystrophy. Rhode Isl. Med. J. 105, 22–27 (2022).

    Google Scholar 

  • Martin, K. J. & González, E. A. Metabolic bone disease in chronic kidney disease. J. Am. Soc. Nephrol. 18, 875–885 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elder, M. et al. Chronic kidney disease-related sarcopenia as a prognostic indicator in elderly haemodialysis patients. BMC Nephrol. 24, 138 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samakkarnthai, P. et al. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 105, e3718–3729 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nickolas, T. L. et al. Rapid cortical bone loss in patients with chronic kidney disease. J. Bone Miner. Res. 28, 1811–1820 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma, A. K. et al. Magnetic resonance imaging based assessment of bone microstructure as a non-invasive alternative to histomorphometry in patients with chronic kidney disease. Bone 114, 14–21 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sharma, A. K. et al. Deterioration of cortical bone microarchitecture: critical component of renal osteodystrophy evaluation. Am. J. Nephrol. 47, 376–384 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aleksova, J. et al. Patients with end-stage kidney disease have markedly abnormal cortical hip parameters by dual-energy X-ray absorptiometry. Nephrol. Dial. Transplant. 36, 543–550 (2019).

    Article 

    Google Scholar 

  • Manavalan, J. S. et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3240–3250 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group KDIGO 2017 Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 7, 1–59 (2017).

    Article 

    Google Scholar 

  • West, S. L. et al. Bone mineral density predicts fractures in chronic kidney disease. J. Bone Miner. Res. 30, 913–919 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Iimori, S. et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients – a single-center cohort study. Nephrol. Dial. Transplant. 27, 345–351 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harvey, N. C. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koumakis, E. et al. Trabecular bone score in female patients with systemic sclerosis: comparison with rheumatoid arthritis and influence of glucocorticoid exposure. J. Rheumatol. 42, 228–235 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leslie, W. D., Aubry-Rozier, B., Lamy, O. & Hans, D. Manitoba Bone Density Program TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 98, 602–609 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yavropoulou, M. P. et al. Bone quality assessment as measured by trabecular bone score in patients with end-stage renal disease on dialysis. J. Clin. Densitom. 20, 490–497 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Aleksova, J., Kurniawan, S. & Elder, G. J. The trabecular bone score is associated with bone mineral density, markers of bone turnover and prevalent fracture in patients with end stage kidney disease. Osteoporos. Int. 29, 1447–1455 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naylor, K. L. et al. Trabecular bone score in kidney transplant recipients. Osteoporos. Int. 27, 1115–1121 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaptoge, S. et al. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J. Bone Miner. Res. 23, 1892–1904 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamal, S. A., Cheung, A. M., West, S. L. & Lok, C. E. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos. Int. 23, 2805–2813 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farr, J. N. et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J. Bone Miner. Res. 29, 787–795 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rubin, M. R. et al. Biochemical markers of bone turnover in older adults with type 1 diabetes. J. Clin. Endocrinol. Metab. 107, e2405–e2416 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinha Gregory, N. et al. Diabetes risk factors and bone microarchitecture as assessed by high-resolution peripheral quantitative computed tomography in adults with long-standing type 1 diabetes. Diabetes Care 47, 1548–1558 (2023).

    Article 

    Google Scholar 

  • Sprague, S. M. et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am. J. Kidney Dis. 67, 559–566 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Einbinder, Y., Benchetrit, S., Golan, E. & Zitman-Gal, T. Comparison of intact PTH and bio-intact PTH assays among non-dialysis dependent chronic kidney disease patients. Ann. Lab. Med. 37, 381–387 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drüeke, T. B. Is parathyroid hormone measurement useful for the diagnosis of renal bone disease? Kidney Int. 73, 674–676 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Whitlock, R. H. et al. The Fracture Risk Assessment Tool (FRAX(R)) predicts fracture risk in patients with chronic kidney disease. Kidney Int. 95, 447–454 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Przedlacki, J. et al. The utility of FRAX(R) in predicting bone fractures in patients with chronic kidney disease on hemodialysis: a two-year prospective multicenter cohort study. Osteoporos. Int. 29, 1105–1115 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Przedlacki, J. et al. FRAX prognostic and intervention thresholds in the management of major bone fractures in hemodialysis patients: a two-year prospective multicenter cohort study. Bone 133, 115188 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schwartz, A. V. et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305, 2184–2192 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leslie, W. D. et al. Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD Registry. J. Bone Miner. Res. 33, 1923–1930 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Conway, B. N., Long, D. M., Figaro, M. K. & May, M. E. Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res. Clin. Pract. 115, 47–53 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xi, G., Rosen, C. J. & Clemmons, D. R. IGF-I and IGFBP-2 stimulate AMPK activation and autophagy, which are required for osteoblast differentiation. Endocrinology 157, 268–281 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwartz, A. V. et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 31, 391–396 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Vestergaard, P., Rejnmark, L. & Mosekilde, L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48, 1292–1299 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heaf, J. Metformin in chronic kidney disease: time for a rethink. Perit. Dial. Int. 34, 353–357 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mai, Q. G. et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J. Cell Biochem. 112, 2902–2909 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salari-Moghaddam, A., Sadeghi, O., Keshteli, A. H., Larijani, B. & Esmaillzadeh, A. Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos. Int. 30, 1167–1173 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar, A., Tiwari, A., Bhasin, P. S. & Mitra, M. Pharmacological and pharmaceutical profile of gliclazide: a review. J. Appl. Pharm. Sci. 1, 11–19 (2011).

    Google Scholar 

  • American Diabetes Association Professional Practice Committee 11. Chronic kidney disease and risk management: standards of care in diabetes – 2024. Diabetes Care 47, S219–S230 (2023).

    Article 

    Google Scholar 

  • Zhu, Z. N., Jiang, Y. F. & Ding, T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68, 115–123 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 17, 227–244 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pereira, M. et al. Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459–467 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, L. et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 35, e3168 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hygum, K. et al. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: a randomised controlled trial. Bone 132, 115197 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wheeler, D. C. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 22–31 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zannad, F. et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396, 819–829 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bode, B. et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes. Metab. 17, 294–303 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS program. Diabetologia 62, 1854–1867 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: an updated meta-analysis. Diabetes Metab. Res. Rev. 35, e3170 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cheng, L. et al. Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment: a meta-analysis of randomized controlled trials. Diabetes Metab. 45, 436–445 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evenepoel, P. et al. Recommended calcium intake in adults and children with chronic kidney disease – a European consensus statement. Nephrol. Dial. Transplant. 39, 341–366 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Oliveira, R. B., Stinghen, A. E. M. & Massy, Z. A. Vitamin K role in mineral and bone disorder of chronic kidney disease. Clin. Chim. Acta 502, 66–72 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chang, X., Xu, S. & Zhang, H. Regulation of bone health through physical exercise: mechanisms and types. Front. Endocrinol. 13, 1029475 (2022).

    Article 

    Google Scholar 

  • Watanabe, K. et al. Home-based exercise and bone mineral density in peritoneal dialysis patients: a randomized pilot study. BMC Nephrol. 22, 98 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khosla, S., Amin, S. & Orwoll, E. Osteoporosis in men. Endocr. Rev. 29, 441–464 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lühe, A. et al. Preclinical evidence for nitrogen-containing bisphosphonate inhibition of farnesyl diphosphate (FPP) synthase in the kidney: implications for renal safety. Toxicol. In Vitro 22, 899–909 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Iseri, K. et al. Elimination of intravenous alendronate by hemodialysis: a kinetic study. Hemodial. Int. 23, 466–471 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Joffe, P. & Henriksen, J. H. Aspects of osseous, peritoneal and renal handling of bisphosphonate during peritoneal dialysis: a methodological study. Scand. J. Clin. Lab. Invest. 56, 327–337 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eastell, R. et al. Diabetes mellitus and the benefit of antiresorptive therapy on fracture risk. J. Bone Miner. Res. 37, 2121–2131 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, P. D. et al. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J. Bone Miner. Res. 20, 2105–2115 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Black, D. M. et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J. Clin. Endocrinol. Metab. 85, 4118–4124 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wetmore, J. B., Benet, L. Z., Kleinstuck, D. & Frassetto, L. Effects of short-term alendronate on bone mineral density in haemodialysis patients. Nephrology 10, 393–399 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iseri, K. et al. Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: a randomized, controlled trial. J. Bone Miner. Res. 34, 1014–1024 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haarhaus, M. & Evenepoel, P. Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment. Kidney Int. 100, 546–558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ott, S. M., Malluche, H. H., Jorgetti, V. & Elder, G. J. Importance of bone turnover for therapeutic decisions in patients with CKD-MBD. Kidney Int. 100, 502–505 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen, M. R. & Aref, M. W. What animal models have taught us about the safety and efficacy of bisphosphonates in chronic kidney disease. Curr. Osteoporos. Rep. 15, 171–177 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Persy, V., De Broe, M. & Ketteler, M. Bisphosphonates prevent experimental vascular calcification: treat the bone to cure the vessels? Kidney Int. 70, 1537–1538 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alarkawi, D. et al. Oral bisphosphonate use and all-cause mortality in patients with moderate-severe (grade 3B-5D) chronic kidney disease: a population-based cohort study. J. Bone Miner. Res. 35, 894–900 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, D. E. et al. Safety of oral bisphosphonates in moderate-to-severe chronic kidney disease: a binational cohort analysis. J. Bone Miner. Res. 36, 820–832 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Orwoll, E. et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J. Clin. Endocrinol. Metab. 97, 3161–3169 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferrari, S. et al. Denosumab in postmenopausal women with osteoporosis and diabetes: subgroup analysis of FREEDOM and FREEDOM extension. Bone 134, 115268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyu, H. et al. Denosumab and incidence of type 2 diabetes among adults with osteoporosis: population based cohort study. BMJ 381, e073435 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiechl, S. et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kondegowda, N. G. et al. Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-κB ligand pathway. Cell Metab. 22, 77–85 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamal, S. A. et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J. Bone Miner. Res. 26, 1829–1835 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thongprayoon, C. et al. Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: a meta-analysis of observational studies. Osteoporos. Int. 29, 1737–1745 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bird, S. T. et al. Severe hypocalcemia with denosumab among older female dialysis-dependent patients. JAMA 331, 491–499 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dave, V., Chiang, C. Y., Booth, J. & Mount, P. F. Hypocalcemia post denosumab in patients with chronic kidney disease stage 4-5. Am. J. Nephrol. 41, 129–137 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Webber, L. et al. ESHRE guideline: management of women with premature ovarian insufficiency. Hum. Reprod. 31, 926–937 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matuszkiewicz-Rowinska, J. et al. The benefits of hormone replacement therapy in pre-menopausal women with oestrogen deficiency on haemodialysis. Nephrol. Dial. Transplant. 14, 1238–1243 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manson, J. E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310, 1353–1368 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boardman, H. M. et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst. Rev. 2015, Cd002229 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Canonico, M. Hormone therapy and hemostasis among postmenopausal women: a review. Menopause 21, 753–762 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Delmas, P. D. et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 87, 3609–3617 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nickelsen, T. et al. Differential effects of raloxifene and continuous combined hormone replacement therapy on biochemical markers of cardiovascular risk: results from the Euralox 1 study. Climacteric 4, 320–331 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ishani, A., Blackwell, T., Jamal, S. A., Cummings, S. R. & Ensrud, K. E. The effect of raloxifene treatment in postmenopausal women with CKD. J. Am. Soc. Nephrol. 19, 1430–1438 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haghverdi, F., Mortaji, S., Soltani, P., Saidi, N. & Farbodara, T. Effect of raloxifene on parathyroid hormone in osteopenic and osteoporotic postmenopausal women with chronic kidney disease stage 5. Iran. J. Kidney Dis. 8, 461–466 (2014).

    PubMed 

    Google Scholar 

  • Saito, O. et al. Effects of raloxifene on bone metabolism in hemodialysis patients with type 2 diabetes. Int. J. Endocrinol. Metab. 10, 464–469 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aleksova, J. et al. Gonadal hormones in the pathogenesis and treatment of bone health in patients with chronic kidney disease: a systematic review and meta-analysis. Curr. Osteoporos. Rep. 16, 674–692 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Adami, S. et al. The efficacy and safety of bazedoxifene in postmenopausal women by baseline kidney function status. Climacteric 17, 273–284 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhasin, S. et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 103, 1715–1744 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Dhindsa, S. et al. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 5462–5468 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grossmann, M. et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J. Clin. Endocrinol. Metab. 93, 1834–1840 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grossmann, M. Low testosterone in men with type 2 diabetes: significance and treatment. J. Clin. Endocrinol. Metab. 96, 2341–2353 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wittert, G. et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 9, 32–45 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrero, J. J. et al. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol. Dial. Transplant. 26, 184–190 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guvel, S. et al. Calcification of the epididymis and the tunica albuginea of the corpora cavernosa in patients on maintenance hemodialysis. J. Androl. 25, 752–756 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Dunkel, L., Raivio, T., Laine, J. & Holmberg, C. Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int. 51, 777–784 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brockenbrough, A. T. et al. Transdermal androgen therapy to augment EPO in the treatment of anemia of chronic renal disease. Am. J. Kidney Dis. 47, 251–262 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaufman, J. M. et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos. Int. 16, 510–516 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Satterwhite, J. et al. Pharmacokinetics of teriparatide (rhPTH[1-34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif. Tissue Int. 87, 485–492 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai, H. et al. Pharmacokinetics of teriparatide after subcutaneous administration to volunteers with renal failure: a pilot study. Int. J. Clin. Pharmacol. Ther. 52, 166–174 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evenepoel, P. et al. Diagnosis and management of osteoporosis in chronic kidney disease stages 4 to 5D: a call for a shift from nihilism to pragmatism. Osteoporos. Int. 32, 2397–2405 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwartz, A. V. et al. Teriparatide in patients with osteoporosis and type 2 diabetes. Bone 91, 152–158 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishikawa, A., Yoshiki, F., Taketsuna, M., Kajimoto, K. & Enomoto, H. Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: post hoc analysis of a postmarketing observational study. Clin. Interv. Aging 11, 1653–1659 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sumida, K. et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos. Int. 27, 1441–1450 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kritmetapak, K. & Pongchaiyakul, C. Parathyroid hormone measurement in chronic kidney disease: from basics to clinical implications. Int. J. Nephrol. 2019, 5496710 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cejka, D., Kodras, K., Bader, T. & Haas, M. Treatment of hemodialysis-associated adynamic bone disease with teriparatide (PTH1-34): a pilot study. Kidney Blood Press. Res. 33, 221–226 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, P. D., Schwartz, E. N., Chen, P., Misurski, D. A. & Krege, J. H. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos. Int. 18, 59–68 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malluche, H. H., Davenport, D. L., Monier-Faugere, M. C. & Lima, F. Treatment of bone loss in CKD5D: better survival in patients with non-high bone turnover. Clin. Nephrol. 98, 219–228 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, P. D. et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316, 722–733 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bilezikian, J. P. et al. Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial. Curr. Med. Res. Opin. 35, 2097–2102 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hsu, C. P., Maddox, J., Block, G., Bartley, Y. & Yu, Z. Influence of renal function on pharmacokinetics, pharmacodynamics, and safety of a single dose of romosozumab. J. Clin. Pharmacol. 62, 1132–1141 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, P. et al. Efficacy and safety of romosozumab among postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease [abstract OP0297]. Ann. Rheum. Dis. 79 (Suppl. 1), 185 (2020).

    Article 

    Google Scholar 

  • Sato, M. et al. Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J. Bone Miner. Metab. 39, 1082–1090 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saito, T. et al. One-year romosozumab treatment followed by one-year denosumab treatment for osteoporosis in patients on hemodialysis: an observational study. Calcif. Tissue Int. 112, 34–44 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saag, K. G., Petersen, J. & Grauer, A. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N. Engl. J. Med. 378, 195–196 (2018).

    PubMed 

    Google Scholar 

  • Lewiecki, E. M. et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J. Clin. Endocrinol. Metab. 103, 3183–3193 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bovijn, J. et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci. Transl. Med. 12, eaay6570 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubin, M. R. & Patsch, J. M. Assessment of bone turnover and bone quality in type 2 diabetic bone disease: current concepts and future directions. Bone Res. 4, 16001 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *