The contribution of attention-deficit/hyperactivity disorder polygenic load to metabolic and cardiovascular health outcomes: a large-scale population and sibling study
Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8. https://doi.org/10.1176/ajp.2007.164.6.942.
Google Scholar
Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry. 2015;56:345–65. https://doi.org/10.1111/jcpp.12381.
Google Scholar
Dobrosavljevic M, Solares C, Cortese S, Andershed H, Larsson H. Prevalence of attention-deficit/hyperactivity disorder in older adults: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;118:282–9. https://doi.org/10.1016/j.neubiorev.2020.07.042.
Google Scholar
Fayyad J, Sampson NA, Hwang I, Adamowski T, Aguilar-Gaxiola S, Al-Hamzawi A, et al. The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. Atten Defic Hyperact Disord. 2017;9:47–65. https://doi.org/10.1007/s12402-016-0208-3.
Google Scholar
Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry. 2006;163:716–23. https://doi.org/10.1176/ajp.2006.163.4.716.
Google Scholar
Du Rietz E, Brikell I, Butwicka A, Leone M, Chang Z, Cortese D, et al. Mapping phenotypic and aetiological associations between ADHD and physical conditions in adulthood in Sweden: a genetically informed register study. Lancet Psychiatry. 2021;8:774–83. https://doi.org/10.1016/S2215-0366(21)00171-1.
Google Scholar
Li L, Chang Z, Sun J, Garcia-Argibay M, Du Rietz E, Dobrosavljevis M, et al. Attention-deficit/hyperactivity disorder as a risk factor for cardiovascular diseases: a nationwide population-based cohort study. World Psychiatry. 2022;21:452–9. https://doi.org/10.1002/wps.21020.
Google Scholar
Li L, Yao H, Zhang L, Garcia-Argibay M, Du Rietz E, Brikell I, et al. Attention-deficit/hyperactivity disorder is associated with increased risk of cardiovascular diseases: a systematic review and meta-analysis. JCPP Advances. 2023;3:e12158 https://doi.org/10.1002/jcv2.12158.
Google Scholar
Xu G, Snetselaar LG, Strathearn L, Ryckman K, Nothwehr F, Torner J. Association between history of attention-deficit/hyperactivity disorder diagnosis and cardiovascular disease in U.S. adults. Health Psychol. 2022;41:693–700. https://doi.org/10.1037/hea0001193.
Google Scholar
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2021;76:2982–3021. Erratum in: J Am Coll Cardiol; 77(15): 1958–1959.
Google Scholar
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20:12 https://doi.org/10.1007/s11906-018-0812-z.
Google Scholar
Demontis D, Walters GB, Athanasiadis G, Walters R, Therrien K, Nielsen TT, et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet. 2023;55:198–208. https://doi.org/10.1038/s41588-022-01285-8.
Google Scholar
Garcia-Argibay M, Du Rietz E, Lu Y, Martin J, Haan E, Lehto K, et al. The role of ADHD genetic risk in mid-to-late life somatic health conditions. Transl Psychiatry. 2022;12:152 Erratum in: Transl Psychiatry; 12(1):166.
Google Scholar
Scholtens S, Smidt N, Swertz MA, Bakker SJL, Dotinga A, Vonk JM, et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44:1172–80. https://doi.org/10.1093/ije/dyu229.
Google Scholar
World Health Organization. International classification of diseases (ICD). 2015. http://www.who.int/classifications/icd/en/.
van der Ende MY, Hartman MH, Hagemeijer Y, Meems LMG, de Vries HS, Stolk RP, et al. The LifeLines cohort study: prevalence and treatment of cardiovascular disease and risk factors. Int J Cardiol. 2017;228:495–500. https://doi.org/10.1016/j.ijcard.2016.11.061.
Google Scholar
Amini M, Bashirova D, Prins BP, Corpeleijn E, Lifelines Cohort Study, Bruinenberg M, et al. Eosinophil count is a common factor for complex metabolic and pulmonary traits and diseases: the LifeLines Cohort study. PloS One. 2016;11:e0168480. https://doi.org/10.1371/journal.pone.0168480.
Google Scholar
Graham SE, Clarke SL, Wu KH, Kanoni S, Zajac GJM, Ramdas S, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021;600:675–9. https://doi.org/10.1038/s41586-021-04064-3.
Google Scholar
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25. https://doi.org/10.1038/s41588-018-0205-x.
Google Scholar
Vart P, Gansevoort RT, Coresh J, Reijneveld SA, Bültmann U. Socioeconomic measures and CKD in the United States and The Netherlands. Clin J Am Soc Nephrol. 2013;8:1685–93. https://doi.org/10.2215/CJN.12521212.
Google Scholar
Zhu Y, Minović I, Dekker LH, Eggersdorfer ML, van Zon SKR, Reijneveld SA, et al. Vitamin status and diet in elderly with low and high socioeconomic status: the Lifelines-MINUTHE study. Nutrients. 2020;12:2659. https://doi.org/10.3390/nu12092659.
Google Scholar
McCarthy S, Das S, Kretzschmar W, Delaneu O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83. https://doi.org/10.1038/ng.3643.
Google Scholar
Neustaeter A, Nolte I, Snieder H, Jansonius NM. Genetic pre-screening for glaucoma in population-based epidemiology: protocol for a double-blind prospective screening study within Lifelines (EyeLife). BMC Ophthalmol. 2021;21:18. https://doi.org/10.1186/s12886-020-01771-9.
Google Scholar
Sijtsma A, Rienks J, van der Harst P, Navis G, Rosmalen JGM, Dotinga A. Cohort profile update: Lifelines, a three-generation cohort study and biobank. Int J Epidemiol. 2022;51:e295–e302.
Google Scholar
The 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Min Kang H, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.
Google Scholar
Coombes BJ, Ploner A, Bergen SE, Biernacka JM. A principal component approach to improve association testing with polygenic risk scores. Genet Epidemiol. 2020;44:676–86. https://doi.org/10.1002/gepi.22339.
Google Scholar
Zetterqvist J, Vansteelandt S, Pawitan Y, Sjölander A. Doubly robust methods for handling confounding by cluster. Biostatistics. 2016;17:264–76. https://doi.org/10.1093/biostatistics/kxv041.
Google Scholar
Gunasekara FI, Richardson K, Carter K, Blakely T. Fixed effects analysis of repeated measures data. Int J Epidemiol. 2014;43:264–9. https://doi.org/10.1093/ije/dyt221.
Google Scholar
Jangmo A, Brikell I, Kuja-Halkola R, Feldman I, Lundstrom S, Almqvist C, et al. The association between polygenic scores for attention-deficit/hyperactivity disorder and school performance: The role of attention-deficit/hyperactivity disorder symptoms, polygenic scores for educational attainment, and shared familial factors. JCPP Adv. 2021;1:e12030. https://doi.org/10.1002/jcv2.12030.
Google Scholar
Clogg CC, Petkova E, Haritou A. Statistical methods for comparing regression coefficients between models. Am J Sociol. 1995;100:1261–93.
Google Scholar
Galobardes B, Shaw M, Lawlor DA, Lynch JW, Smith GD. Indicators of socioeconomic position (part 1). J Epidemiol Community Health. 2006;60:7–12. https://doi.org/10.1136/jech.2004.023531.
Google Scholar
Akinci MA, Uzun N. Evaluation of hematological inflammatory markers in children and adolescents with attention deficit/hyperactivity disorder. Bratisl Lek Listy. 2021;122:256–62. https://doi.org/10.4149/BLL_2021_042.
Google Scholar
Lindblad F, Eickhoff M, Forslund AH, Isaksson J, Gustafsson J. Fasting blood glucose and HbA1c in children with ADHD. Psychiatry Res. 2015;226:515–6. https://doi.org/10.1016/j.psychres.2015.01.028.
Google Scholar
Pinho R, Wang B, Becker A, Rothenberger A, Outeiro TF, Hermann-Lingen C, et al. Attention-deficit/hyperactivity disorder is associated with reduced levels of serum low-density lipoprotein cholesterol in adolescents. Data from the population-based German KiGGS study. World J Biol Psychiatry. 2019;20:496–504. https://doi.org/10.1080/15622975.2017.1417636.
Google Scholar
Ugur C, Uneri OS, Goker Z, Sekmen E, Aydemir H, Solmaz E. The assessment of serum lipid profiles of children with attention deficit hyperactivity disorder. Psychiatry Re. 2018;264:231–5. https://doi.org/10.1016/j.psychres.2018.04.006.
Google Scholar
Dobrosavljevic M, Kuja-Halkola R, Li L, Chang Z, Larsson H, Du Rietz E. Attention-deficit/hyperactivity disorder symptoms and subsequent cardiometabolic disorders in adults: investigating underlying mechanisms using a longitudinal twin study. BMC Med. 2023;21:452 https://doi.org/10.1186/s12916-023-03174-1.
Google Scholar
Brikell I, Wimberley T, Albiñana C, Pedersen EM, Vilhjalmsson BJ, Agerbo E, et al. Genetic, clinical, and sociodemographic factors associated with stimulant treatment outcomes in ADHD. Am J Psychiatry. 2021;178:854–64. https://doi.org/10.1176/appi.ajp.2020.20121686.
Google Scholar
Zhang L, Yao H, Li L, Du Rietz E, Andell P, Garcia-Argibay M, et al. Risk of cardiovascular diseases associated with medications used in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. JAMA Netw Open. 2022;5:e2243597. https://doi.org/10.1001/jamanetworkopen.2022.43597.
Google Scholar
Andraweera PH, Condon B, Collett G, Genrilcore S, Lassi ZS. Cardiovascular risk factors in those born preterm – systematic review and meta-analysis. J Dev Orig Health Dis. 2021;12:539–54. https://doi.org/10.1017/S2040174420000914.
Google Scholar
Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25:4063–84. https://doi.org/10.2174/1381612825666190925163827.
Google Scholar
Minhas AMK, Jain V, Li M, Ariss RW, Fudim M, Michos ED, et al. Family income and cardiovascular disease risk in American adults. Sci Rep. 2023;13:279. https://doi.org/10.1038/s41598-023-27474-x.
Google Scholar
Quesada D, Ahmed NU, Fennie KP, Gollub EL, Ibrahimou B. A review: associations between attention-deficit/hyperactivity disorder, physical activity, medication use, eating behaviors and obesity in children and adolescents. Arch Psychiatr Nurs. 2018;32:495–504. https://doi.org/10.1016/j.apnu.2018.01.006.
Google Scholar
Leppert B, Riglin L, Wootton RE, Dardani C, Thapar A, Staley JR, et al. The effect of attention deficit/hyperactivity disorder on physical health outcomes: a 2-sample Mendelian randomization study. Am J Epidemiol. 2021;190:1047–55. https://doi.org/10.1093/aje/kwaa273.
Google Scholar
Demange PA, Hottenga JJ, Abdellaoui A, Eilertsen EM, Malenchini M, Domingue BW, et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat Commun. 2022;13:4801. https://doi.org/10.1038/s41467-022-32003-x.
Google Scholar
Fletcher J, Wu Y, Li T, Lu Q. Interpreting polygenic score effects in sibling analysis. bioRxiv 2021; https://doi.org/10.1101/2021.07.16.452740.
Du Rietz E, Coleman J, Glanville K, Choi SW, O’Reilly PF, Kuntsi J. Association of polygenic risk for attention-deficit/hyperactivity disorder with co-occurring traits and disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:635–43. https://doi.org/10.1016/j.bpsc.2017.11.013.
Google Scholar
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. https://doi.org/10.1038/s41588-018-0269-7.
Google Scholar
Lamon-Fava S, Diffenderfer MR, Barrett PHR, Buchsbaum A, Matthan NR, Lichtenstein AH, et al. Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism. J Lipid Res. 2007;48:1746–53. https://doi.org/10.1194/jlr.M700067-JLR200.
Google Scholar
Huang R, Feng Y, Wang Y, Qin X, Melgiri ND, Sun Y, et al. Comparative efficacy and safety of antihypertensive agents for adult diabetic patients with microalbuminuric kidney disease: a network meta-analysis. PLoS One. 2017;12:e0168582. https://doi.org/10.1371/journal.pone.0168582.
Google Scholar
Klijs B, Scholtens S, Mandemakers JJ, Snieder H, Stolk RP, Smidt N. Representativeness of the LifeLines cohort study. PLoS One. 2015;10:e0137203. https://doi.org/10.1371/journal.pone.0137203.
Google Scholar
Taylor AE, Jones HJ, Sallis H, Eusden J, Stergiakouli E, Davies NM, et al. Exploring the association of genetic factors with participation in the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2018;47:1207–16. https://doi.org/10.1093/ije/dyy060.
Google Scholar
link