Preclinical modeling of metabolic syndrome to study the pleiotropic effects of novel antidiabetic therapy independent of obesity

0
Preclinical modeling of metabolic syndrome to study the pleiotropic effects of novel antidiabetic therapy independent of obesity
  • Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 3(11), 866–875. (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Centers for Disease Control and Prevention. National Diabetes Statistics Report website. Accessed 09 Dec 2023.

  • Birkeland, K. I. et al. How representative of a general type 2 diabetes population are patients included in cardiovascular outcome trials with SGLT-2 inhibitors? A large European observational study. Diabetes Obes. Metab. 21(4), 968–974. (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, J. et al. EMPEROR-reduced trial committees and investigators. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: The EMPEROR-reduced trial. Eur. Heart J. 42(13), 1203–1212. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inzucchi, S. E. et al. Are the cardiovascular and kidney benefits of empagliflozin influenced by baseline glucose-lowering therapy?. Diabetes Obes. Metab. 22(4), 631–639. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389(12), 1069–1084. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McMurray, J. J. V. et al. The dapagliflozin and prevention of adverse-outcomes in heart failure (DAPA-HF) trial: Baseline characteristics. Eur. J. Heart Fail. 21(11), 1402–1411. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377(7), 644–657. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer, M. et al. Design of a prospective patient-level pooled analysis of two parallel trials of empagliflozin in patients with established heart failure. Eur. J. Heart Fail. 22(12), 2393–2398. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Persson, F. et al. Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: A multinational observational study. Diabetes Obes. Metab. 20(2), 344–351. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373(22), 2117–2128. (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ndumele, C. E. et al. Cardiovascular-kidney-metabolic health: A presidential advisory from the American heart association. Circulation (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grundy, S. M. et al. American heart association; national heart, lung, and blood institute diagnosis and management of the metabolic syndrome: An American heart association/national heart, lung, and blood institute scientific statement. Circulation 112(17), 2735–2752. (2005).

    Article 
    PubMed 

    Google Scholar 

  • Newsome, P. N. & Ambery, P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J. Hepatol. 79, 1557–1565. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacob, J. A. Researchers turn to canine clinical trials to advance cancer therapies. JAMA 315(15), 1550–1552. (2016) (PMID: 27027696).

    Article 
    PubMed 

    Google Scholar 

  • Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. U. S. A. 110(9), 3507–3512. (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waring, M. J. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14(7), 475–486. (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA modernization act 2.0: Transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest. 133(21), e175824. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilmore, K. M. & Greer, K. A. Why is the dog an ideal model for aging research?. Exp. Gerontol. 71, 14–20. (2015) (Epub 2015 Aug 29 PMID: 26325590).

    Article 
    PubMed 

    Google Scholar 

  • Gordon, I., Paoloni, M., Mazcko, C. & Khanna, C. The comparative oncology trials consortium: Using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 6(10), e1000161. (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaeberlein, M., Creevy, K. E. & Promislow, D. E. The dog aging project: Translational geroscience in companion animals. Mamm. Genome 27(7–8), 279–288. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopper, J. J. et al. Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery: A one health approach. Front. Toxicol. 10(3), 773953. (2021).

    Article 

    Google Scholar 

  • Masters, A. K. et al. Effects of short-term anti-inflammatory glucocorticoid treatment on clinicopathologic, echocardiographic, and hemodynamic variables in systemically healthy dogs. Am. J. Vet. Res. 79(4), 411–423. (2018) (PMID: 29583045).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sebbag, L. & Mochel, J. P. An eye on the dog as the scientist’s best friend for translational research in ophthalmology: Focus on the ocular surface. Med. Res. Rev. 40(6), 2566–2604. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xenoulis, P. G. & Steiner, J. M. Lipid metabolism and hyperlipidemia in dogs. Vet. J. 183(1), 12–21. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14(3), 140–162. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53(1), 51–65. (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mochel, J. P. et al. Sacubitril/valsartan (LCZ696) significantly reduces aldosterone and increases cGMP circulating levels in a canine model of RAAS activation. Eur. J. Pharm. Sci. 1(128), 103–111. (2019).

    Article 
    CAS 

    Google Scholar 

  • Mochel, J. P. & Danhof, M. Chronobiology and pharmacologic modulation of the renin-angiotensin-aldosterone system in dogs: What have we learned?. Rev. Physiol. Biochem. Pharmacol. 169, 43–69. (2015) (PMID: 26428686).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mochel, J. P. et al. Pharmacokinetic/pharmacodynamic modeling of renin-angiotensin aldosterone biomarkers following angiotensin-converting enzyme (ACE) inhibition therapy with benazepril in dogs. Pharm. Res. 32(6), 1931–1946. (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, B. et al. Model-based reverse translation between veterinary and human medicine: The one health initiative. CPT Pharmacometrics Syst. Pharmacol. 7(2), 65–68. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moinard, A. et al. Effects of high-fat diet at two energetic levels on fecal microbiota, colonic barrier, and metabolic parameters in dogs. Front. Vet. Sci. 25(7), 566282. (2020).

    Article 

    Google Scholar 

  • Xue, J. et al. A protein- and fiber-rich diet with astaxanthin alleviates high-fat diet-induced obesity in beagles. Front. Nutr. 24(9), 1019615. (2022).

    Article 
    CAS 

    Google Scholar 

  • Peña, C. et al. Effects of low-fat high-fiber diet and mitratapide on body weight reduction, blood pressure and metabolic parameters in obese dogs. J. Vet. Med. Sci. 76(9), 1305–1308. (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, H. et al. Different diet energy levels alter body condition, glucolipid metabolism, fecal microbiota and metabolites in adult beagle dogs. Metabolites 13(4), 554. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tvarijonaviciute, A. et al. Obesity-related metabolic dysfunction in dogs: A comparison with human metabolic syndrome. BMC Vet. Res. 28(8), 147. (2012).

    Article 
    CAS 

    Google Scholar 

  • Vecchiato, C. G. et al. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front. Microbiol. 12(13), 1050474. (2023).

    Article 

    Google Scholar 

  • Romero-Corral, A. et al. Normal weight obesity: A risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 31(6), 737–746. (2010).

    Article 
    PubMed 

    Google Scholar 

  • Shi, T. H., Wang, B. & Natarajan, S. The influence of metabolic syndrome in predicting mortality risk among US adults: Importance of metabolic syndrome even in adults with normal weight. Prev. Chronic Dis. 21(17), E36. (2020).

    Article 

    Google Scholar 

  • EMPA-KIDNEY Collaborative Group. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol. Dial. Transpl. 37(7), 1317–1329. (2022).

    Article 
    CAS 

    Google Scholar 

  • Oyama, K. et al. Obesity and effects of dapagliflozin on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus in the DECLARE-TIMI 58 trial. Eur. Heart J. 43(31), 2958–2967. (2022) (PMID: 34427295).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wheeler, D. C. et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol. Dial. Transp. 35(10), 1700–1711. (2020).

    Article 
    CAS 

    Google Scholar 

  • Adamson, C. et al. Efficacy of dapagliflozin in heart failure with reduced ejection fraction according to body mass index. Eur. J. Heart Fail. 23(10), 1662–1672. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iennarella-Servantez, C. A. et al. Diet-induced clinical responsiveness of translational dog model for human western diet (WD)-related disease research. J. Anim. Sci. 99(3), 58–59. (2021).

    Article 

    Google Scholar 

  • German, A. J. et al. A simple, reliable tool for owners to assess the body condition of their dog or cat. J. Nutr. 136(7 Suppl), 2031S-2033S. (2006) (PMID: 16772488).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • National Health and Nutrition Examination Survey. (NHANES 2015–2016: Males and Females over 20 years). https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/temp-wweia-usual-intake-data-tables/.

  • National Research Council. Nutrient Requirements of Dogs and Cats (The National Academies Press, Washington, 2006).

    Google Scholar 

  • Acierno, M. J. et al. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J. Vet. Intern. Med. 32(6), 1803–1822. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larner, C. D. High performance lipoprotein profiling for cardiovascular risk assessment. PhD thesis, Texas A&M University (2012).

  • Minamoto, T. et al. Altered lipoprotein profiles in cats with hepatic lipidosis. J. Feline Med. Surg. 21(4), 363–372. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, B. K. et al. Breakthrough: A first-in-class virtual simulator for dose optimization of ACE inhibitors in translational cardiovascular medicine. Sci. Rep. 13(1), 3300. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sotillo, S. et al. Dose-response of benazepril on biomarkers of the classical and alternative pathways of the renin-angiotensin-aldosterone system in dogs. Sci. Rep. 13(1), 2684. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, J. L., Chou, Y. Y., Yuan, L., Dorman, K. S. & Mochel, J. P. Retrospective evaluation of a dose-dependent effect of angiotensin-converting enzyme inhibitors on long-term outcome in dogs with cardiac disease. J. Vet. Intern. Med. 35(5), 2102–2111. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, J. L. et al. Circulating renin-angiotensin-aldosterone system activity in cats with systemic hypertension or cardiomyopathy. J. Vet. Intern. Med. 36(3), 897–909. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Domenig, O. et al. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the Murine and human kidney. Sci. Rep. 21(6), 33678. (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guo, Z. et al. Measurement of equilibrium angiotensin II in the diagnosis of primary aldosteronism. Clin. Chem. 66(3), 483–492. (2020) (PMID: 32068832).

    Article 
    PubMed 

    Google Scholar 

  • Zoufaly, A. et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med. 8(11), 1154–1158. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González-Arostegui, L. G., Muñoz-Prieto, A., Tvarijonaviciute, A., Cerón, J. J. & Rubio, C. P. Measurement of redox biomarkers in the whole blood and red blood cell lysates of dogs. Antioxidants (Basel) 11(2), 424. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campos, C., Guzmán, R., López-Fernández, E. & Casado, A. Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC-BCS assay. Anal. Biochem. 392(1), 37–44. (2009) (Epub 2009 May 21 PMID: 19464250).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rubio, C. P. et al. Validation of three automated assays for total antioxidant capacity determination in canine serum samples. J. Vet. Diagn. Invest. 28(6), 693–698. (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benzie, I. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239(1), 70–76. (1996) (PMID: 8660627).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arnao, M. B., Cano, A., Hernández-Ruiz, J., García-Cánovas, F. & Acosta, M. Inhibition by L-ascorbic acid and other antioxidants of the 2.2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: A new approach for determining total antioxidant status of foods. Anal. Biochem. 236(2), 255–261. (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Da Costa, C. M., Dos Santos, R. C. C. & Lima, E. S. A simple automated procedure for thiol measurement in human serum samples. J. Bras. Patol. Med. Lab. 42, 345–350. (2006).

    Article 

    Google Scholar 

  • Tvarijonaviciute, A., Tecles, F., Caldin, M., Tasca, S. & Cerón, J. Validation of spectrophotometric assays for serum paraoxonase type-1 measurement in dogs. Am. J. Vet. Res. 73(1), 34–41. (2012) (PMID: 22204286).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kapun, A. P., Salobir, J., Levart, A., Kotnik, T. & Svete, A. N. Oxidative stress markers in canine atopic dermatitis. Res. Vet. Sci. 92(3), 469–470. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verk, B., Nemec Svete, A., Salobir, J., Rezar, V. & Domanjko, P. A. Markers of oxidative stress in dogs with heart failure. J. Vet. Diagn. Invest. 29(5), 636–644. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38(12), 1103–1111. (2005) (Epub 2005 Oct 7 PMID: 16214125).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tatzber, F., Griebenow, S., Wonisch, W. & Winkler, R. Dual method for the determination of peroxidase activity and total peroxides-iodide leads to a significant increase of peroxidase activity in human sera. Anal. Biochem. 316(2), 147–153. (2003) (PMID: 12711334).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alberti, A., Bolognini, L., Macciantelli, D. & Caratelli, M. The radical cation of N, N-diethyl-para-phenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 26, 253–267. (2000).

    Article 
    CAS 

    Google Scholar 

  • Rubio, C. P. et al. Stability of biomarkers of oxidative stress in canine serum. Res. Vet. Sci. 121, 85–93. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witko-Sarsat, V. et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49(5), 1304–1313. (1996) (PMID: 8731095).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49(5), 1137–1146. (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3(3), 211–221. (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adutwum, L. A., de la Mata, A. P., Bean, H. D., Hill, J. E. & Harynuk, J. J. Estimation of start and stop numbers for cluster resolution feature selection algorithm: An empirical approach using null distribution analysis of Fisher ratios. Anal. Bioanal. Chem. 409(28), 6699–6708. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinkov, N. A. & Harynuk, J. J. Cluster resolution: A metric for automated, objective and optimized feature selection in chemometric modeling. Talanta 83(4), 1079–1087. (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyu, Y. et al. Differences in metabolic profiles of healthy dogs fed a high-fat vs. a high-starch diet. Front. Vet. Sci. 9, 801863. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavaghan, M. K., Ehrmann, D. A. & Polonsky, K. S. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest. 106(3), 329–333. (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rix, I., Nexøe-Larsen, C., Bergmann, N. C., Lund, A. & Knop, F. K. Glucagon Physiology. In: Feingold, K. R., Anawalt, B., Blackman, M. R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W. W., Dhatariya, K., Dungan, K., Hofland, J., Kalra, S., Kaltsas, G., Kapoor, N., Koch, C., Kopp, P., Korbonits, M., Kovacs, C. S., Kuohung, W., Laferrère, B., Levy, M., McGee, E. A., McLachlan, R., New, M., Purnell, J., Sahay, R., Shah, A. S., Singer, F., Sperling, M. A., Stratakis, C. A., Trence, D. L. & Wilson, D. P., (eds). South Dartmouth (MA): MDText.com, Inc. (2000).

  • Burger, M. & Schaller, D. J. Metabolic Acidosis. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PMID: 29489167 (2023).

  • Wieërs, M. L. A. J., Beynon-Cobb, B., Visser, W. J. & Attaye, I. Dietary acid load in health and disease. Pflugers Arch. 476(4), 427–443. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, S., Hashmi, M. F. & Aggarwal, S. Hyperchloremic Acidosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2023).

  • Bamgbola, O. F. Review of the pathophysiologic and clinical aspects of hypokalemia in children and young adults: An Update. Curr. Treat Options Pediatr. 8(3), 96–114. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batlle, D. et al. Proximal renal tubular acidosis and hypophosphatemia induced by arginine. Adv. Exp. Med. Biol. 151, 239–249. (1982) (PMID: 6817609).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vasquez-Rios, G., Westrich, D. J. Jr., Philip, I., Edwards, J. C. & Shieh, S. Distal renal tubular acidosis and severe hypokalemia: A case report and review of the literature. J. Med. Case Rep. 13(1), 103. (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambert, D. C., Kane, J., Slaton, A. & Abramowitz, M. K. Associations of metabolic syndrome and abdominal obesity with anion gap metabolic acidosis among US adults. Kidney360 3(11), 1842–1851. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoian, M. & Stoica, V. The role of distubances of phosphate metabolism in metabolic syndrome. Maedica (Bucur) 9(3), 255–260 (2014).

    PubMed 

    Google Scholar 

  • Sun, K. et al. Serum potassium level is associated with metabolic syndrome: A population-based study. Clin. Nutr. 33(3), 521–527. (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalaitzidis, R., Tsimihodimos, V., Bairaktari, E., Siamopoulos, K. C. & Elisaf, M. Disturbances of phosphate metabolism: Another feature of metabolic syndrome. Am. J. Kidney Dis. 45(5), 851–858. (2005) (PMID: 15861350).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shimodaira, M., Okaniwa, S. & Nakayama, T. Reduced serum phosphorus levels were associated with metabolic syndrome in men but not in women: A cross-sectional study among the Japanese population. Ann. Nutr. Metab. 71(3–4), 150–156. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tropf, M., Nelson, O. L., Lee, P. M. & Weng, H. Y. Cardiac and metabolic variables in obese dogs. J. Vet. Intern. Med. 31(4), 1000–1007. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hussain, A. et al. Association of NT-ProBNP, blood pressure, and cardiovascular events: The ARIC study. J. Am. Coll. Cardiol. 77(5), 559–571. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, I. S., Yoon, W. K. & Choi, E. W. N-terminal pro-B-type natriuretic peptide levels in normotensive and hypertensive dogs with myxomatous mitral valve disease stage B. Ir. Vet. J. 76(1), 3. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayes-Genis, A. et al. Practical algorithms for early diagnosis of heart failure and heart stress using NT-proBNP: A clinical consensus statement from the heart failure association of the ESC. Eur. J. Heart Fail. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Singletary, G. E., Morris, N. A., Lynne O’Sullivan, M., Gordon, S. G. & Oyama, M. A. Prospective evaluation of NT-proBNP assay to detect occult dilated cardiomyopathy and predict survival in Doberman Pinschers. J. Vet. Intern. Med. 26(6), 1330–1336. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilshaw, J. et al. Accuracy of history, physical examination, cardiac biomarkers, and biochemical variables in identifying dogs with stage B2 degenerative mitral valve disease. J. Vet. Intern. Med. 35(2), 755–770. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinkuolie, A. O., Paynter, N. P., Padmanabhan, L. & Mora, S. High-density lipoprotein particle subclass heterogeneity and incident coronary heart disease. Circ. Cardiovasc. Qual. Outcomes 7(1), 55–63. (2014).

    Article 
    PubMed 

    Google Scholar 

  • Superko, H. R. et al. High-density lipoprotein subclasses and their relationship to cardiovascular disease. J. Clin. Lipidol. 6(6), 496–523. (2012).

    Article 
    PubMed 

    Google Scholar 

  • Duan, R. et al. Estimation of the LDL subclasses in ischemic stroke as a risk factor in a Chinese population. BMC Neurol. 20(1), 414. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahm Cardoso, J. M. et al. Blood pressure, serum glucose, cholesterol, and triglycerides in dogs with different body scores. Vet. Med. Int. 2016, 8675283. (2016).

    Article 
    CAS 

    Google Scholar 

  • Aleksandrova, K., Koelman, L. & Rodrigues, C. E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 42, 101869. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boden, G. et al. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 7(304), 304re7. (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsuzawa-Nagata, N. et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57(8), 1071–1077. (2008) (PMID: 18640384).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiofalo, B. et al. Effects of dietary protein and fat concentrations on hormonal and oxidative blood stress biomarkers in guide dogs during training. J. Vet. Behav. 37, 86–92. (2020).

    Article 

    Google Scholar 

  • Qu, W. et al. Profound perturbation in the metabolome of a canine obesity and metabolic disorder model. Front. Endocrinol. (Lausanne) 19(13), 849060. (2022).

    Article 

    Google Scholar 

  • Amjad, S. et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol. Metab. 49, 101195. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Surjana, D., Halliday, G. M. & Damian, D. L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids. 25(2010), 157591. (2010).

    Article 
    CAS 

    Google Scholar 

  • Frühbeck, G., Méndez-Giménez, L., Fernández-Formoso, J. A., Fernández, S. & Rodríguez, A. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27(1), 63–93. (2014) (Epub 2014 May 28 PMID: 24872083).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bánhegyi, G. & Loewus, F. A. Ascorbic acid catabolism: Breakdown pathways in animals and plants. In Vitamin C, Function and Biochemistry in Animals and Plants (eds Asard, H. et al.) 35 (Taylor & Francis, New York, 2004).

    Chapter 

    Google Scholar 

  • Hishikawa, D., Hashidate, T., Shimizu, T. & Shindou, H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res. 55(5), 799–807. (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sivaprakasam, S., Prasad, P. D. & Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164, 144–151. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hooper, L. et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 5(5), CD011737. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Siri-Tarino, P. W., Sun, Q., Hu, F. B. & Krauss, R. M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 91(3), 502–509. (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolsoni-Lopes, A. et al. Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. Lipids Health Dis. 20(13), 199. (2014).

    Article 
    CAS 

    Google Scholar 

  • Cruz, M. M. et al. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids Health Dis. 17(1), 55. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alves, S. P., Marcelino, C., Portugal, P. V. & Bessa, R. J. Short communication: The nature of heptadecenoic acid in ruminant fats. J. Dairy Sci. 89(1), 170–173. (2006) (PMID: 16357280).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amigo, J. M., Skov, T., Bro, R., Coello, J. & Maspoch, S. Solving GC-MS problems with PARAFAC2. TrAC Trends Anal. Chem. 27, 714–725. (2008).

    Article 
    CAS 

    Google Scholar 

  • Giebelhaus, R. T., Sorochan Armstrong, M. D., de la Mata, A. P. & Harynuk, J. J. Untargeted region of interest selection for gas chromatography–mass spectrometry data using a pseudo F-ratio moving window. J. Chromatogr. A 1682, 463499. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giebelhaus, R. T., Erland, L. A. E. & Murch, S. J. HormonomicsDB: A novel workflow for the untargeted analysis of plant growth regulators and hormones. F1000Research 11, 119 (2022).

    Article 

    Google Scholar 

  • Monnerie, S. et al. Metabolomic and lipidomic signatures of metabolic syndrome and its physiological components in adults: A systematic review. Sci. Rep. 10(1), 669. (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadowaki, T. et al. Interconnection between cardiovascular, renal and metabolic disorders: A narrative review with a focus on Japan. Diabetes Obes. Metab. 24(12), 2283–2296. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Heart, Lung, and Blood Institute (NHLBI). What is metabolic syndrome? Last 18 May 2022.

  • R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rubio, C. P., Martinez-Subiela, S., Hernández-Ruiz, J., Tvarijonaviciute, A. & Ceron, J. J. Analytical validation of an automated assay for ferric-reducing ability of plasma in dog serum. J. Vet. Diagn. Invest. 29(4), 574–578. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, M. C. Hyperlipidemia disorders in dogs. Compend. Contin. Educat. Pract. Vet. 27, 361–364 (2005).

  • Littman, M. P. Spontaneous systemic hypertension in 24 cats. J. Vet. Intern. Med. 8(2), 79–86. (1994). PMID: 8046680.

  • Jocelyn, P. C. Spectrophotometric assay of thiols. Methods Enzymol. 143, 44–67. (1987). PMID: 3657559.

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *