Ketone body metabolism and cardiometabolic implications for cognitive health

0
Ketone body metabolism and cardiometabolic implications for cognitive health
  • Okunogbe A., Nugent R., Spencer G., Ralston J., Wilding J. Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob. Health. 2022;7: ARTN e009773. https://doi.org/10.1136/bmjgh-2022-009773.

  • Huai P. C., Liu J., Ye X., Li W. Q. Association of central obesity with all cause and cause-specific mortality in US adults: A prospective cohort study. Front. Cardiovasc. Medicine. 2022;9: ARTN 816144. https://doi.org/10.3389/fcvm.2022.816144.

  • Michalsen V. L. et al Obesity measures, metabolic health and their association with 15-year all-cause and cardiovascular mortality in the SAMINOR 1 Survey: a population-based cohort study. BMC Cardiovasc. Disord. 2021;21. ARTN 510. https://doi.org/10.1186/s12872-021-02288-9.

  • Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferrante, A. W. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J. Intern. Med. 262, 408–414 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Campbell, P., Rutten, F. H., Lee, M. M., Hawkins, N. M. & Petrie, M. C. Heart failure with preserved ejection fraction: everything the clinician needs to know. Lancet 403, 1083–1092 (2024).

    Article 
    PubMed 

    Google Scholar 

  • de la Monte, S. M., Longato, L., Tong, M. & Wands, J. R. Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr. Opin. Invest Dr 10, 1049–1060 (2009).

    Google Scholar 

  • Dewidar, B. et al. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine 94, 104714 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fan, J., Krautkramer, K. A., Feldman, J. L. & Denu, J. M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95–108 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhu, J. J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, I. H. & Finkel, T. Metabolic regulation of the cell cycle. Curr. Opin. Cell Biol. 25, 724–729 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hall, S. E., Wastney, M. E., Bolton, T. M., Braaten, J. T. & Berman, M. Ketone body kinetics in humans: the effects of insulin-dependent diabetes, obesity, and starvation. J. Lipid Res 25, 1184–1194 (1984).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Investig. 106, 473–481 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dunn, L. et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol. Aging 35, 1111–1115 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kim, D. Y., Park, J. & Han, I. O. Hexosamine biosynthetic pathway and -GlcNAc cycling of glucose metabolism in brain function and disease. Am. J. Physiol.-Cell Physiol. 325, C981–C998 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wilder, R. The effect of ketonemia on the course of epilepsy. MAYO Clin. Proc. 2, 307–308 (1921).

    Google Scholar 

  • Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J. & Ulland, T. K. beta-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflamm. 17, 280 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yin, J. X. et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging 39, 25–37 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017). PMCID: PMC5313038.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kivimäki M. et al. Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. BMJ-Brit Med J. 2019;365. ARTN l1495. https://doi.org/10.1136/bmj.l1495.

  • Taylor, M. K., Sullivan, D. K., Mahnken, J. D., Burns, J. M. & Swerdlow, R. H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N. Y) 4, 28–36 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ota, M. et al. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett. 690, 232–236 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hegardt, F. G. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J. 338, 569–582 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Quant, P. A., Tubbs, P. K. & Brand, M. D. Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. Eur. J. Biochem 187, 169–174 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • von Meyenn, F. et al. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab. 17, 436–447 (2013).

    Article 

    Google Scholar 

  • Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic Fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. MAYO Clin. Proc. 55, 434–438 (1980).

    PubMed 
    CAS 

    Google Scholar 

  • Browning, J. D. & Horton, J. D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Investig. 114, 147–152 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, S. et al. Impaired ketogenesis is associated with metabolic-associated fatty liver disease in subjects with type 2 diabetes. Front Endocrinol. 14, 1124576 (2023).

    Article 

    Google Scholar 

  • Mey J. T. et al. beta-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro. Am. J. Physiol. Endocrinol. Metab. (2020).

  • Hughey C. C., Puchalska P., Crawford P. A. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim. et Biophys. Acta (BBA) – Mol. Cell Biol. Lipids. 2022:159209. https://doi.org/10.1016/j.bbalip.2022.159209.

  • Fletcher, J. A. et al. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 5, e127737 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease. Cell Metab. 14, 804–810 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reaven, G. M. Pathophysiology of insulin-resistance in human-disease. Physiol. Rev. 75, 473–486 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harrison, H. C. & Long, C. N. H. The distribution of ketone bodies in tissues. J. Biol. Chem. 133, 209–218 (1940).

    Article 
    CAS 

    Google Scholar 

  • Halestrap, A. P. The monocarboxylate transporter family–Structure and functional characterization. IUBMB Life 64, 1–9 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Balasse, E. O. & Fery, F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diab./Metab. Rev. 5, 247–270 (1989).

    Article 
    CAS 

    Google Scholar 

  • Valente-Silva, P., Lemos, C., Köfalvi, A., Cunha, R. A. & Jones, J. G. Ketone bodies effectively compete with glucose for neuronal acetyl-CoA generation in rat hippocampal slices. NMR Biomed. 28, 1111–1116 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sato, K. et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 9, 651–658 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Endemann, G., Goetz, P. G., Edmond, J. & Brunengraber, H. Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. J. Biol. Chem. 257, 3434–3440 (1982).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Robinson, A. M. & Wlliamson, D. H. Utilization of D-3-hydroxy[3-14C]butyrate for lipogenesis in vivo in lactating rat mammary gland. Biochem. J. 176, 635–638 (1978).

  • Geelen, M. J., Lopes-Cardozo, M. & Edmond, J. Acetoacetate: a major substrate for the synthesis of cholesterol and fatty acids by isolated rat hepatocytes. FEBS Lett. 163, 269–273 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hasegawa, S. et al. Acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, is controlled by SREBP-2 and affects serum cholesterol levels. Mol. Genet. Metab. 107, 553–560 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hasegawa, S. et al. Acetoacetyl-CoA synthetase is essential for normal neuronal development. Biochem. Biophys. Res Commun. 427, 398–403 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bergstrom, J. D. The lipogenic enzyme acetoacetyl-CoA synthetase and ketone body utilization for denovo lipid synthesis, a review. J. Lipid Res. 64, 100407 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Taggart, A. K. et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280, 26649–26652 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, S. P. et al. β-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus. J. Neuroendocrinol. 27, 212–222 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rahman, M. et al. The beta-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 5, 3944 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shimazu, T. et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xie, Z. et al. Metabolic regulation of gene expression by Histone Lysine beta-Hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Miyamoto, J. et al. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proc. Natl Acad. Sci. USA 116, 23813–23821 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fenselau, A. & Wallis, K. 3-oxo acid coenzyme A-transferase in normal and diabetic rat muscle. Biochem. J. 158, 509–512 (1976).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Grinblat, L., Pacheco Bolanos, L. F. & Stoppani, A. O. Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem. J. 240, 49–56 (1986).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Turko, I. V., Marcondes, S. & Murad, F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am. J. Physiol. Heart Circ. Physiol. 281, H2289–H2294 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nyenwe, E. A. & Kitabchi, A. E. The evolution of diabetic ketoacidosis: An update of its etiology, pathogenesis and management. Metabolism 65, 507–521 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Owen, O. E. et al. Brain metabolism during fasting. J. Clin. Invest 46, 1589–1595 (1967).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cotter, D. G., d’Avignon, D. A., Wentz, A. E., Weber, M. L. & Crawford, P. A. Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J. Biol. Chem. 286, 6902–6910 (2011). PMCID: PMC3044945.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fukao, T. et al. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Mol. Genet. Metab. 89, 280–282 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Qiu, C. X., De Ronchi, D. & Fratiglioni, L. The epidemiology of the dementias: an update. Curr. Opin. Psychiatr. 20, 380–385 (2007).

    Article 

    Google Scholar 

  • Xu, W. L. et al. Midlife overweight and obesity increase late-life dementia risk A population-based twin study. Neurology 76, 1568–1574 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Whitmer, R. A., Gunderson, E. P., Barrett-Connor, E., Quesenberry, C. P. & Yaffe, K. Obesity in middle age and future risk of dementia: a 27-year longitudinal population-based study. BMJ-Brit. Med. J. 330, 1360–1362b (2005).

    Article 

    Google Scholar 

  • Schubert, D. Glucose metabolism and Alzheimer’s disease. Ageing Res. Rev. 4, 240–257 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, Y., Chiu, E., Rosenberg, J. & Gambhir, S. S. Standardized uptake value atlas: characterization of physiological 2-deoxy-2-[18F]fluoro-D-glucose uptake in normal tissues. Mol. Imaging Biol. 9, 83–90 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Boumezbeur, F. et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic C nuclear magnetic resonance spectroscopy. J. Neurosci. 30, 13983–13991 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ebert, D., Haller, R. G. & Walton, M. E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 5928–5935 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hefner, M., Baliga, V., Amphay, K., Ramos, D. & Hegde, V. Cardiometabolic modification of amyloid beta in Alzheimer’s disease pathology. Front. Aging Neurosci. 13, 721858 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Erion, J. R. et al. Obesity elicits Interleukin 1-mediated deficits in hippocampal synaptic plasticity. J. Neurosci. 34, 2618–2631 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Guo, D. H. et al. Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1 cells. J. Clin. Investig. 130, 1961–1976 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med 21, 263–269 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 116, 1784–1792 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ng R. C. L. et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol. Neurodegener. 2016;11. ARTN 71. https://doi.org/10.1186/s13024-016-0136-x.

  • Bloemer J. et al. Adiponectin knockout mice display cognitive and synaptic deficits. Front. Endocrinol. 2019;10. ARTN 819. https://doi.org/10.3389/fendo.2019.00819.

  • Jeon, B. T. et al. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 61, 1444–1454 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • So S. W., Fleming K. M., Nixon J. P. & Butterick T. A. Early life obesity increases neuroinflammation, amyloid beta deposition, and cognitive decline in a mouse model of Alzheimer’s disease. Nutrients. 2023;15. https://doi.org/10.3390/nu15112494.

  • Morris, J. K. et al. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiol. Aging 39, 19–24 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Baker, L. D. et al. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 68, 51–57 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Mosconi, L., Pupi, A. & De Leon, M. J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. Ny. Acad. Sci. 1147, 180–195 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunnane, S. et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27, 3–20 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mu Y. L., Gage F. H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 2011;6. Artn 85. https://doi.org/10.1186/1750-1326-6-85.

  • Willette, A. A. et al. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimers Dement. 11, 504–510 e501 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kim, B., Elzinga, S. E., Henn, R. E., McGinley, L. M. & Feldman, E. L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis. 132, 104541 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Puig, K. L., Floden, A. M., Adhikari, R., Golovko, M. Y. & Combs, C. K. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One 7, e30378 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vingtdeux, V. et al. Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiol. Dis. 20, 625–637 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Takashima, A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 9, 309–317 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pettigrew, C. & Soldan, A. Defining cognitive reserve and implications for cognitive aging. Curr. Neurol. Neurosci. Rep. 19, 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whalley, L. J., Deary, I. J., Appleton, C. L. & Starr, J. M. Cognitive reserve and the neurobiology of cognitive aging. Ageing Res. Rev. 3, 369–382 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Hammond, T. C. et al. beta-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline. Commun. Biol. 3, 352 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Niccoli, T. et al. Increased glucose transport into neurons rescues Aβ Toxicity in (vol 26, pg 2291, 2016). Curr. Biol. 26, 2550–2550 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Andersen, J. V. et al. Alterations in cerebral cortical glucose and glutamine metabolism precedes amyloid plaques in the APPswe/PSEN1dE9 mouse model of Alzheimer’s disease. Neurochem Res 42, 1589–1598 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Andersen, J. V. et al. Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death Dis. 12, 954 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Westi, E. W., Andersen, J. V. & Aldana, B. I. Using stable isotope tracing to unravel the metabolic components of neurodegeneration: Focus on neuron-glia metabolic interactions. Neurobiol. Dis. 182, 106145 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Williams H. C. et al. alters glucose flux through central carbon pathways in astrocytes. Neurobiol. Disease. 2020;136. ARTN 104742. https://doi.org/10.1016/j.nbd.2020.104742.

  • Huebbe, P. et al. APOE genotype regulates body weight and fatty acid utilization-Studies in gene-targeted replacement mice. Mol. Nutr. Food Res. 59, 334–343 (2015).

  • Conway, V. et al. Apolipoprotein E isoforms disrupt long-chain fatty acid distribution in the plasma, the liver and the adipose tissue of mice. Prostaglandins Leukot. Ess. Fat. Acids 91, 261–267 (2014).

    Article 
    CAS 

    Google Scholar 

  • Arbones-Mainar, J. M. et al. Metabolic shifts toward fatty-acid usage and increased thermogenesis are associated with impaired adipogenesis in mice expressing human APOE4. Int J. Obes. (Lond.) 40, 1574–1581 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jones N. S., Watson K. Q. & Rebeck G. W. Metabolic disturbances of a high-fat diet are dependent on APOE genotype and sex. eNeuro. 2019;6. https://doi.org/10.1523/eneuro.0267-19.2019.

  • Burke, J. R. & Roses, A. D. Genetics of Alzheimer’s disease. Int J. Neurol. 25-26, 41–51 (1991).

    PubMed 

    Google Scholar 

  • Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Roses, A. D. Apolipoprotein E is a relevant susceptibility gene that affects the rate of expression of Alzheimer’s disease. Neurobiol. Aging 15, S165–S167 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Reger, M. A. et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J. Alzheimers Dis. 13, 323–331 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liguori, C. et al. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 43, 2040–2049 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schurr, A., Payne, R. S., Miller, J. J. & Rigor, B. M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: An in vitro study. Brain Res. 744, 105–111 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schurr, A., West, C. A. & Rigor, B. M. Lactate-supported synaptic function in the rat Hippocampal slice preparation. Science 240, 1326–1328 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chamaa F., Magistretti P. J., Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol. Dis. 2024:106417. https://doi.org/10.1016/j.nbd.2024.106417.

  • Kálmán, J. et al. Lactate infusion fails to improve semantic categorization in Alzheimer’s disease. Brain Res. Bull. 65, 533–539 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Ma Y. L. et al. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front. Endocrinol. 2023;14. ARTN 1133991 https://doi.org/10.3389/fendo.2023.1133991.

  • Lovejoy, J., Newby, F. D., Gebhart, S. S. P. & Digirolamo, M. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metab.-Clin. Exp. 41, 22–27 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Vettor, R. et al. Lactate infusion in anesthetized rats produces insulin resistance in heart and skeletal muscles. Metab.-Clin. Exp. 46, 684–690 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin, Y. J. et al. Lactate is a key mediator that links obesity to insulin resistance via modulating cytokine production from adipose tissue. Diabetes 71, 637–652 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sauerbeck, A. D. et al. Spinal cord injury causes chronic liver pathology in rats. J. Neurotraum. 32, 159–169 (2015).

    Article 

    Google Scholar 

  • Sun, X. F. et al. Liver-derived ketogenesis via overexpressing HMGCS2 promotes the recovery of spinal cord injury. Adv. Biol-Ger, (2023).

  • Eisenberg, D. et al. Interaction between increasing body mass index and spinal cord injury to the probability of developing a diagnosis of nonalcoholic fatty liver disease. Obes. Sci. Pract. 9, 253–260 (2023).

    Article 
    PubMed 

    Google Scholar 

  • ROSENBLOOM, J. The acetone bodies in diabetes mellitus: influence of low and high protein intake on the excretion of acetone, diacetic acid and beta-oxybutyric acid. J. Am. Med. Assoc. LXV, 1715–1717 (1915).

    Article 

    Google Scholar 

  • Krikorian, R. et al. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33, 425.e419–425.e427 (2012).

    Article 

    Google Scholar 

  • Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546.e535 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mujica-Parodi, L. R. et al. Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proc. Natl Acad. Sci. USA 117, 6170–6177 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fortier, M. et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 15, 625–634 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Likhodii, S. S. et al. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia 41, 1400–1410 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Asrih M., Altirriba J., Rohner-Jeanrenaud F. & Jornayvaz F. R. Ketogenic diet impairs FGF21 signaling and promotes differential inflammatory responses in the liver and white adipose tissue. Plos One. 2015;10: ARTN e0126364 https://doi.org/10.1371/journal.pone.0126364.

  • Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e548 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang H. J., Shan W., Zhu F., Wu J. P., Wang Q. Ketone bodies in neurological diseases: focus on neuroprotection and underlying mechanisms. Front. Neurol. 2019;10. ARTN 585. https://doi.org/10.3389/fneur.2019.00585.

  • Koppel, S. J. & Swerdlow, R. H. Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem. Int. 117, 114–125 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Murugan, M. & Boison, D. Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Res. 167, 106444 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Browning, J. D. et al. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 93, 1048–1052 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Foster, G. D. et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann. Intern. Med. 153, 147–157 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laeger, T., Metges, C. C. & Kuhla, B. Role of β-hydroxybutyric acid in the central regulation of energy balance. Appetite 54, 450–455 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dashti, H. M. et al. Long-term effects of a ketogenic diet in obese patients. Exp. Clin. Cardiol. 9, 200–205 (2004).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kwiterovich, P. O. Jr., Vining, E. P., Pyzik, P., Skolasky R, Jr. & Freeman JM. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 290, 912–920 (2003).

  • Nelson, A. B., Queathem, E. D., Puchalska, P. & Crawford, P. A. Metabolic messengers: ketone bodies. Nat. Metab. 5, 2062–2074 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Desrochers, S., David, F., Garneau, M., Jette, M. & Brunengraber, H. Metabolism of R- and S-1,3-butanediol in perfused livers from meal-fed and starved rats. Biochem. J. 285, 647–653 (1992).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • D’Agostino, D. P. et al. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am. J. Physiol. – Regul. Integr. Comp. Physiol. 304, R829–R836 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Webber, R. J. & Edmond, J. Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat. J. Biol. Chem. 252, 5222–5226 (1977).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Desrochers, S. et al. Metabolism of (R,S)-1,3-butanediol acetoacetate esters, potential parenteral and enteral nutrients in conscious pigs. Am. J. Physiol. 268, E660–E667 (1995).

    PubMed 
    CAS 

    Google Scholar 

  • Clarke, K. et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharm. 63, 401–408 (2012).

    Article 
    CAS 

    Google Scholar 

  • Shivva, V. et al. The population pharmacokinetics of D-β-hydroxybutyrate following administration of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. AAPS J. 18, 678–688 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Monteyne A. J. et al. A ketone monoester drink reduces postprandial blood glucose concentrations in adults with type 2 diabetes: a randomised controlled trial. Diabetologia. 2024. https://doi.org/10.1007/s00125-024-06122-7.

  • Kashiwaya, Y. et al. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat. J. Biol. Chem. 285, 25950–25956 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Veech R. L. Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat. In: Ann.N. Y. Acad. Sci. 2013:42–48.

  • Deemer, S. E. et al. Exogenous dietary Ketone Ester decreases body weight and adiposity in mice housed at thermoneutrality. Obesity 28, 1447–1455 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dakhili, S. A. T. et al. Ketone ester administration improves glycemia in obese mice. Am. J. Physiol.-Cell Physiol. 325, C750–C757 (2023).

    Article 
    CAS 

    Google Scholar 

  • Moore, M. P. et al. A dietary ketone ester mitigates histological outcomes of NAFLD and markers of fibrosis in high-fat diet fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G564–G572 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Quinones M. D. & Lemon P. W. R. Ketone Ester supplementation improves some aspects of cognitive function during a simulated soccer match after induced mental fatigue. Nutrients. 2022;14. https://doi.org/10.3390/nu14204376.

  • Margolis L. M., Pasiakos S. M. & Howard E. E. High-fat ketogenic diets and ketone monoester supplements differentially affect substrate metabolism during aerobic exercise. Am. J. Physiol. Cell Physiol. 2023. https://doi.org/10.1152/ajpcell.00359.2023.

  • Pawlosky, R. J. et al. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J. Neurochem. 141, 195–207 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fulghum, K. & Hill, B. G. Metabolic mechanisms of exercise-induced cardiac remodeling. Front. Cardiovasc. Med. 5, 127 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rodahl, K., Miller, H. I. & Issekutz, B. Jr Plasma free fatty acids in exercise. J. Appl. Physiol. 19, 489–492 (1964).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kaijser, L. & Berglund, B. Myocardial lactate extraction and release at rest and during heavy exercise in healthy men. Acta Physiol. Scand. 144, 39–45 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Johnson, R. H., Walton, J. L., Krebs, H. A. & Williamson, D. H. Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet 294, 452–455 (1969).

    Article 

    Google Scholar 

  • Koeslag, J. H., Noakes, T. D. & Sloan, A. W. Post-exercise ketosis. J. Physiol. 301, 79–90 (1980).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fulghum K., Collins H. E., Jones S. P. & Hill B. G. Influence of biological sex and exercise on murine cardiac metabolism. J Sport Health Sci. 2022: https://doi.org/10.1016/j.jshs.2022.06.001.

  • Thyfault, J. P. & Bergouignan, A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia 63, 1464–1474 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, X. & Thyfault, J. P. Exercise drives metabolic integration between muscle, adipose and liver metabolism and protects against aging-related diseases. Exp. Gerontol. 176, 112178 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Morris J. K. et al. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. Plos One. 2017;12. ARTN e0170547. https://doi.org/10.1371/journal.pone.0170547.

  • Baker, L. D. et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol. 67, 71–79 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chow L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022. https://doi.org/10.1038/s41574-022-00641-2.

  • Takimoto, M. & Hamada, T. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J. Appl Physiol. (1985) 116, 1238–1250 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fery, F. & Balasse, E. O. Ketone body turnover during and after exercise in overnight-fasted and starved humans. Am. J. Physiol. 245, E318–E325 (1983).

    PubMed 
    CAS 

    Google Scholar 

  • Fery, F. & Balasse, E. O. Effect of exercise on the disposal of infused ketone bodies in humans. J. Clin. Endocrinol. Metab. 67, 245–250 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Johnson, R. H. & Walton, J. L. The effect of exercise upon acetoacetate metabolism in athletes and non‐athletes. Q. J. Exp. Physiol. Cogn. Med. Sci. 57, 73–79 (1972).

    PubMed 
    CAS 

    Google Scholar 

  • Cannataro, R. et al. Ketogenic diet acts on body remodeling and MicroRNAs expression profile. Microrna 8, 116–126 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferrannini, E. et al. Shift to fatty substrate utilization in response to Sodium-Glucose Cotransporter 2 inhibition in subjects without diabetes and patients with Type 2 Diabetes. Diabetes 65, 1190–1195 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Saucedo-Orozco, H., Voorrips, S. N., Yurista, S. R., de Boer, R. A. & Westenbrink, B. D. SGLT2 inhibitors and ketone metabolism in heart failure. J. Lipid Atheroscler. 11, 1–19 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Capozzi, M. E. et al. The limited role of glucagon for ketogenesis during fasting or in response to SGLT2 inhibition. Diabetes 69, 882–892 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Akuta N. et al. Favorable impact of long-term SGLT2 inhibitor for NAFLD complicated by diabetes mellitus: A 5-year follow-up study. Hepatol. Commun. (2022).

  • Cai, R.-P., Xu, Y.-L. & Su, Q. Dapagliflozin in patients with chronic heart failure: a systematic review and meta-analysis. Cardiol. Res Pr. 2021, 6657380–6657380 (2021).

    Google Scholar 

  • Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ong Lopez, A. M. C. & Pajimna, J. A. T. Efficacy of sodium glucose cotransporter 2 inhibitors on hepatic fibrosis and steatosis in non-alcoholic fatty liver disease: an updated systematic review and meta-analysis. Sci. Rep. 14, 2122 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lupsa, B. C., Kibbey, R. G. & Inzucchi, S. E. Ketones: the double-edged sword of SGLT2 inhibitors. Diabetologia 66, 23–32 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fitchett, D. et al. investigators E-ROt. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur. Heart J. 37, 1526–1534 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *