Impact of seasonal biometeorological conditions and particulate matter on asthma and COPD hospital admissions

0
Impact of seasonal biometeorological conditions and particulate matter on asthma and COPD hospital admissions
  • Watts, N. et al. The Lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391, 581–630 (2018).

    Article 

    Google Scholar 

  • Rossi, O., Kinnula, V. L., Tienari, J. & Huhti, E. Association of severe asthma attacks with weather, pollen, and air pollutants. Thorax 48, 244–248 (1993).

    Article 
    CAS 

    Google Scholar 

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Githeko, A. K., Lindsay, S. W., Confalonieri, U. E. & Patz, J. A. Climate change and vector-borne diseases: a regional analysis. Bull. World Health Organ. 78, 1136–1147 (2000).

    CAS 

    Google Scholar 

  • Ai, Z. et al. International Energy Agency-Resilient Cooling of Buildings-State of the Art Review. (2023).

  • Davis, L., Gertler, P., Jarvis, S. & Wolfram, C. Air conditioning and global inequality. Glob. Environ. Change. 69, 102299 (2021).

    Article 

    Google Scholar 

  • Yu, B. et al. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3–20 (2009).

    Article 

    Google Scholar 

  • Dawson, J., Adams, P. & Pandis, S. Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study. Atmos. Chem. Phys. 7, 4295–4309 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fiore, A. M., Naik, V. & Leibensperger, E. M. Air quality and climate connections. J. Air Waste Manag. Assoc. 65, 645–685 (2015).

    Article 
    CAS 

    Google Scholar 

  • Jacobson, M. Z. Atmospheric Pollution: History, Science, and Regulation (Cambridge University Press, 2002).

  • Giannadaki, D., Pozzer, A. & Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 14, 957–968 (2014).

    Article 
    ADS 

    Google Scholar 

  • Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schraufnagel, D. E. The health effects of ultrafine particles. Exp. Mol. Med. 52, 311–317 (2020).

    Article 
    CAS 

    Google Scholar 

  • Leclercq, B. et al. Air pollution-derived PM2. 5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ. Pollut. 243, 1434–1449 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yao, Y. et al. Susceptibility of individuals with chronic obstructive pulmonary disease to respiratory inflammation associated with short-term exposure to ambient air pollution: a panel study in Beijing. Sci. Total Environ. 766, 142639 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, M. et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. Jama 322, 546–556 (2019).

    Article 
    CAS 

    Google Scholar 

  • DeVries, R., Kriebel, D. & Sama, S. Outdoor air pollution and COPD-related emergency department visits, hospital admissions, and mortality: a meta-analysis. COPD: J. Chronic Obstr. Pulmonary Disease. 14, 113–121 (2017).

    Article 

    Google Scholar 

  • Li, W. et al. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 37, 1793–1800 (2017).

    Article 
    CAS 

    Google Scholar 

  • Grilli, A. et al. Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles. BMC Genom. 19, 1–15 (2018).

    Article 

    Google Scholar 

  • Park, J., Kim, H. J., Lee, C. H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lee, K. K. et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Global Health. 8, e1427–e1434 (2020).

    Article 

    Google Scholar 

  • Li, J. et al. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis., 3079–3091 (2016).

  • Biener, A. I., Decker, S. L. & Rohde, F. Prevalence and treatment of chronic obstructive pulmonary disease (COPD) in the United States. Jama 322, 602–602 (2019).

    Article 

    Google Scholar 

  • Zhu, R. X. et al. Relationship between particulate matter (PM2. 5) and hospitalizations and mortality of chronic obstructive pulmonary disease patients: a meta-analysis. Am. J. Med. Sci. 359, 354–364 (2020).

    Article 

    Google Scholar 

  • Zhang, S., Li, G., Tian, L., Guo, Q. & Pan, X. Short-term exposure to air pollution and morbidity of COPD and asthma in east Asian area: a systematic review and meta-analysis. Environ. Res. 148, 15–23 (2016).

    Article 
    CAS 

    Google Scholar 

  • He, J. et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 223, 484–496 (2017).

    Article 
    CAS 

    Google Scholar 

  • Yayan, J. & Rasche, K. Asthma and COPD: similarities and differences in the pathophysiology, diagnosis and therapy. Respiratory Med. Sci., 31–38 (2016).

  • Aoshiba, K. & Nagai, A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin. Rev. Allergy Immunol. 27, 35–43 (2004).

    Article 
    CAS 

    Google Scholar 

  • Grootendorst, D. et al. Comparison of inflammatory cell counts in asthma: induced sputum vs bronchoalveolar lavage and bronchial biopsies. Clin. Experimental Allergy. 27, 769–779 (1997).

    Article 
    CAS 

    Google Scholar 

  • Lex, C. et al. Airway Eosinophilia in children with severe asthma: predictive values of noninvasive tests. Am. J. Respir. Crit Care Med. 174, 1286–1291 (2006).

    Article 

    Google Scholar 

  • Wenzel, S. E. et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit Care Med. 160, 1001–1008 (1999).

    Article 
    CAS 

    Google Scholar 

  • Bush, A. Pathophysiological mechanisms of asthma. Front. Pead. 7, 68 (2019).

    Article 

    Google Scholar 

  • Piloni, D. et al. Asthma-like symptoms: is it always a pulmonary issue? Multidisciplinary Respiratory Med. 13, 1–3 (2018).

    Article 

    Google Scholar 

  • Zheng, X. et al. Effects of cigarette smoking and biomass fuel on lung function and respiratory symptoms in middle-aged adults and the elderly in Guangdong Province, China: a cross‐sectional study. Indoor air. 30, 860–871 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bhatt, S. P. et al. Phenotypes, Etiotypes, and endotypes of exacerbations of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit Care Med. 208, 1026–1041 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kohansal, R. et al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am. J. Respir. Crit Care Med. 180, 3–10 (2009).

    Article 

    Google Scholar 

  • Staiger, H., Laschewski, G. & Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 10, 18 (2019).

    Article 
    ADS 

    Google Scholar 

  • Smoyer-Tomic, K. E. & Rainham, D. Beating the heat: development and evaluation of a Canadian hot weather health-response plan. Environ. Health Perspect. 109, 1241–1248 (2001).

    Article 
    CAS 

    Google Scholar 

  • Romaszko, J., Dragańska, E., Jalali, R., Cymes, I. & Glińska-Lewczuk, K. Universal Climate Thermal Index as a prognostic tool in medical science in the context of climate change: a systematic review. Sci. Total Environ. 828, 154492 (2022).

    Article 
    CAS 

    Google Scholar 

  • Romaszko-Wojtowicz, A. et al. Relationship between biometeorological factors and the number of hospitalizations due to asthma. Sci. Rep. 10, 9593 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • CCOHS. Humidex Rating and Work. (2024). Available at: Accesed on 14 July 2024.

  • Błażejczyk, K. & Błażejczyk, M. BioKlima-w poszukiwaniu nowych narzędzi badania bioklimatu miast. (1999).

  • GIOS Powietrze. (2024). Available at: Accesed on 14 July 2024.

  • Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article 
    ADS 

    Google Scholar 

  • Draganska, E., Szwejkowski, Z. & Grabowska, K. Thermal seasons in north-east region of Poland in the years 1971¡ 2000. Zeszyty Problemowe Postepow Nauk. Rolniczych, 57–65 (2007).

  • Organization, W. H. WHO Global air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (World Health Organization, 2021).

  • Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with python. SciPy 7 (2010).

  • Hänninen, O. et al. Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ. Health Perspect. 122, 439–446 (2014).

    Article 

    Google Scholar 

  • Lupton, R. C. & Allwood, J. M. Hybrid Sankey diagrams: visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124, 141–151 (2017).

    Article 

    Google Scholar 

  • Stančin, I. & Jović, A. In 2019 42nd International convention on information and communication technology, electronics and microelectronics (MIPRO). 977–982 (IEEE).

  • Masterton, J. M. & Richardson, F. Humidex: a method of quantifying human discomfort due to excessive heat and humidity. (1981).

  • Achebak, H. et al. Ambient temperature and risk of cardiovascular and respiratory adverse health outcomes: a nationwide cross-sectional study from Spain. Eur. J. Prev. Cardiol., zwae021 (2024).

  • Makrufardi, F. et al. Extreme weather and asthma: a systematic review and meta-analysis. Eur. Respiratory Rev. 32 (2023).

  • Belachew, A. B. et al. Effect of cold winters on the risk of new asthma: a case-crossover study in Finland. Occup. Environ. Med. 80, 702–705 (2023).

    Article 

    Google Scholar 

  • Lei, J. et al. Non-optimum ambient temperature may decrease pulmonary function: a longitudinal study with intensively repeated measurements among asthmatic adult patients in 25 Chinese cities. Environ. Int. 164, 107283 (2022).

    Article 

    Google Scholar 

  • Hervás, D., Utrera, J., Hervás-Masip, J. & Hervás, J. García-Marcos, L. can meteorological factors forecast asthma exacerbation in a paediatric population? Allergol. Immunopathol. 43, 32–36 (2015).

    Article 

    Google Scholar 

  • Rau, A. et al. Heat and Cold Wave–related mortality risk among United States veterans with Chronic Obstructive Pulmonary Disease: a case-crossover study. Environ. Health Perspect. 132, 027004 (2024).

    Article 

    Google Scholar 

  • Shi, C., Zhu, J., Wu, Q., Liu, Y. & Hao, Y. Effects of ambient temperature and humidity on COPD mortality in Ganzhou City, China. Int. J. Biometeorol., 1–10 (2024).

  • Krzyżewska, A. & Wereski, S. Heat waves and frost waves in selected Polish stations against bioclimatic regions background (2000–2010). Przegląd Geofizyczny. 56, 99–109 (2011).

    Google Scholar 

  • Fishe, J., Zheng, Y., Lyu, T., Bian, J. & Hu, H. Environmental effects on acute exacerbations of respiratory diseases: a real-world big data study. Sci. Total Environ. 806, 150352 (2022).

    Article 
    CAS 

    Google Scholar 

  • Parums, D. V. & Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2023 guidelines for COPD, including COVID-19, Climate Change, and Air Pollution. Med. Sci. Monitor: Int. Med. J. Experimental Clin. Res. 29, e942672–e942671 (2023).

    Article 

    Google Scholar 

  • Ferguson, M. D., Migliaccio, C. & Ward, T. Comparison of how ambient PMc and PM2. 5 influence the inflammatory potential. Inhalation Toxicol. 25, 766–773 (2013).

    Article 
    CAS 

    Google Scholar 

  • Valderrama, A. et al. Particulate matter (PM10) induces in vitro activation of human neutrophils, and lung histopathological alterations in a mouse model. Sci. Rep. 12, 7581 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marín-Palma, D. et al. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 13, 12773 (2023).

    Article 
    ADS 

    Google Scholar 

  • Huang, S. K., Zhang, Q., Qiu, Z. & Chung, K. F. mechanistic impact of outdoor air pollution on asthma and allergic diseases. J. Thorac. Disease. 7, 23 (2015).

    Google Scholar 

  • Ni, L., Chuang, C. C. & Zuo, L. Fine particulate matter in acute exacerbation of COPD. Front. Physiol. 6, 163183 (2015).

    Article 

    Google Scholar 

  • Ling, S. H. & van Eeden, S. F. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis., 233–243 (2009).

  • Megaritis, A. et al. Linking climate and air quality over Europe: effects of meteorology on PM 2.5 concentrations. Atmos. Chem. Phys. 14, 10283–10298 (2014).

    Article 
    ADS 

    Google Scholar 

  • Cai, Z., Jiang, F., Chen, J., Jiang, Z. & Wang, X. Weather condition dominates regional PM2. 5 pollutions in the eastern coastal provinces of China during winter. Aerosol Air Qual. Res. 18, 969–980 (2018).

    Article 

    Google Scholar 

  • Guo, L. C. et al. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 215, 195–202 (2016).

    Article 
    CAS 

    Google Scholar 

  • Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).

    Article 
    CAS 

    Google Scholar 

  • D’Amato, G. et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 8, 1–52 (2015).

    Article 

    Google Scholar 

  • Jenkins, C. et al. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur. Respir. J. 39, 38–45 (2012).

    Article 
    CAS 

    Google Scholar 

  • Romaszko, J. et al. Applicability of the universal thermal climate index for predicting the outbreaks of respiratory tract infections: a mathematical modeling approach. Int. J. Biometeorol. 63, 1231–1241 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 3, e151 (2007).

    Article 

    Google Scholar 

  • Noti, J. D. et al. High humidity leads to loss of infectious influenza virus from simulated coughs. PloS One. 8, e57485 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Beasley, R. et al. Viral respiratory tract infection and exacerbations of asthma in adult patients. Thorax 43, 679–683 (1988).

    Article 
    CAS 

    Google Scholar 

  • Wedzicha, J. A. Mechanisms of chronic obstructive pulmonary disease exacerbations. Annals Am. Thorac. Soc. 12, S157–S159 (2015).

    Article 

    Google Scholar 

  • Hoffmann, C. et al. Asthma and COPD exacerbation in relation to outdoor air pollution in the metropolitan area of Berlin, Germany. Respir. Res. 23, 64 (2022).

    Article 
    CAS 

    Google Scholar 

  • Márovics, G. et al. Weather Variability and COPD: a risk estimation identified a vulnerable sub-population in Hungary. vivo 38, 1690–1697 (2024).

    Article 

    Google Scholar 

  • Márovics, G. et al. in Healthcare. 2309 (MDPI).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *