Impact of seasonal biometeorological conditions and particulate matter on asthma and COPD hospital admissions
Watts, N. et al. The Lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391, 581–630 (2018).
Google Scholar
Rossi, O., Kinnula, V. L., Tienari, J. & Huhti, E. Association of severe asthma attacks with weather, pollen, and air pollutants. Thorax 48, 244–248 (1993).
Google Scholar
Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).
Google Scholar
Githeko, A. K., Lindsay, S. W., Confalonieri, U. E. & Patz, J. A. Climate change and vector-borne diseases: a regional analysis. Bull. World Health Organ. 78, 1136–1147 (2000).
Google Scholar
Ai, Z. et al. International Energy Agency-Resilient Cooling of Buildings-State of the Art Review. (2023).
Davis, L., Gertler, P., Jarvis, S. & Wolfram, C. Air conditioning and global inequality. Glob. Environ. Change. 69, 102299 (2021).
Google Scholar
Yu, B. et al. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3–20 (2009).
Google Scholar
Dawson, J., Adams, P. & Pandis, S. Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study. Atmos. Chem. Phys. 7, 4295–4309 (2007).
Google Scholar
Fiore, A. M., Naik, V. & Leibensperger, E. M. Air quality and climate connections. J. Air Waste Manag. Assoc. 65, 645–685 (2015).
Google Scholar
Jacobson, M. Z. Atmospheric Pollution: History, Science, and Regulation (Cambridge University Press, 2002).
Giannadaki, D., Pozzer, A. & Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 14, 957–968 (2014).
Google Scholar
Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).
Google Scholar
Schraufnagel, D. E. The health effects of ultrafine particles. Exp. Mol. Med. 52, 311–317 (2020).
Google Scholar
Leclercq, B. et al. Air pollution-derived PM2. 5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ. Pollut. 243, 1434–1449 (2018).
Google Scholar
Yao, Y. et al. Susceptibility of individuals with chronic obstructive pulmonary disease to respiratory inflammation associated with short-term exposure to ambient air pollution: a panel study in Beijing. Sci. Total Environ. 766, 142639 (2021).
Google Scholar
Wang, M. et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. Jama 322, 546–556 (2019).
Google Scholar
DeVries, R., Kriebel, D. & Sama, S. Outdoor air pollution and COPD-related emergency department visits, hospital admissions, and mortality: a meta-analysis. COPD: J. Chronic Obstr. Pulmonary Disease. 14, 113–121 (2017).
Google Scholar
Li, W. et al. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 37, 1793–1800 (2017).
Google Scholar
Grilli, A. et al. Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles. BMC Genom. 19, 1–15 (2018).
Google Scholar
Park, J., Kim, H. J., Lee, C. H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).
Google Scholar
Lee, K. K. et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Global Health. 8, e1427–e1434 (2020).
Google Scholar
Li, J. et al. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis., 3079–3091 (2016).
Biener, A. I., Decker, S. L. & Rohde, F. Prevalence and treatment of chronic obstructive pulmonary disease (COPD) in the United States. Jama 322, 602–602 (2019).
Google Scholar
Zhu, R. X. et al. Relationship between particulate matter (PM2. 5) and hospitalizations and mortality of chronic obstructive pulmonary disease patients: a meta-analysis. Am. J. Med. Sci. 359, 354–364 (2020).
Google Scholar
Zhang, S., Li, G., Tian, L., Guo, Q. & Pan, X. Short-term exposure to air pollution and morbidity of COPD and asthma in east Asian area: a systematic review and meta-analysis. Environ. Res. 148, 15–23 (2016).
Google Scholar
He, J. et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 223, 484–496 (2017).
Google Scholar
Yayan, J. & Rasche, K. Asthma and COPD: similarities and differences in the pathophysiology, diagnosis and therapy. Respiratory Med. Sci., 31–38 (2016).
Aoshiba, K. & Nagai, A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin. Rev. Allergy Immunol. 27, 35–43 (2004).
Google Scholar
Grootendorst, D. et al. Comparison of inflammatory cell counts in asthma: induced sputum vs bronchoalveolar lavage and bronchial biopsies. Clin. Experimental Allergy. 27, 769–779 (1997).
Google Scholar
Lex, C. et al. Airway Eosinophilia in children with severe asthma: predictive values of noninvasive tests. Am. J. Respir. Crit Care Med. 174, 1286–1291 (2006).
Google Scholar
Wenzel, S. E. et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit Care Med. 160, 1001–1008 (1999).
Google Scholar
Bush, A. Pathophysiological mechanisms of asthma. Front. Pead. 7, 68 (2019).
Google Scholar
Piloni, D. et al. Asthma-like symptoms: is it always a pulmonary issue? Multidisciplinary Respiratory Med. 13, 1–3 (2018).
Google Scholar
Zheng, X. et al. Effects of cigarette smoking and biomass fuel on lung function and respiratory symptoms in middle-aged adults and the elderly in Guangdong Province, China: a cross‐sectional study. Indoor air. 30, 860–871 (2020).
Google Scholar
Bhatt, S. P. et al. Phenotypes, Etiotypes, and endotypes of exacerbations of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit Care Med. 208, 1026–1041 (2023).
Google Scholar
Kohansal, R. et al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am. J. Respir. Crit Care Med. 180, 3–10 (2009).
Google Scholar
Staiger, H., Laschewski, G. & Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 10, 18 (2019).
Google Scholar
Smoyer-Tomic, K. E. & Rainham, D. Beating the heat: development and evaluation of a Canadian hot weather health-response plan. Environ. Health Perspect. 109, 1241–1248 (2001).
Google Scholar
Romaszko, J., Dragańska, E., Jalali, R., Cymes, I. & Glińska-Lewczuk, K. Universal Climate Thermal Index as a prognostic tool in medical science in the context of climate change: a systematic review. Sci. Total Environ. 828, 154492 (2022).
Google Scholar
Romaszko-Wojtowicz, A. et al. Relationship between biometeorological factors and the number of hospitalizations due to asthma. Sci. Rep. 10, 9593 (2020).
Google Scholar
CCOHS. Humidex Rating and Work. (2024). Available at: Accesed on 14 July 2024.
Błażejczyk, K. & Błażejczyk, M. BioKlima-w poszukiwaniu nowych narzędzi badania bioklimatu miast. (1999).
GIOS Powietrze. (2024). Available at: Accesed on 14 July 2024.
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
Google Scholar
Draganska, E., Szwejkowski, Z. & Grabowska, K. Thermal seasons in north-east region of Poland in the years 1971¡ 2000. Zeszyty Problemowe Postepow Nauk. Rolniczych, 57–65 (2007).
Organization, W. H. WHO Global air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (World Health Organization, 2021).
Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).
Google Scholar
Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with python. SciPy 7 (2010).
Hänninen, O. et al. Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ. Health Perspect. 122, 439–446 (2014).
Google Scholar
Lupton, R. C. & Allwood, J. M. Hybrid Sankey diagrams: visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124, 141–151 (2017).
Google Scholar
Stančin, I. & Jović, A. In 2019 42nd International convention on information and communication technology, electronics and microelectronics (MIPRO). 977–982 (IEEE).
Masterton, J. M. & Richardson, F. Humidex: a method of quantifying human discomfort due to excessive heat and humidity. (1981).
Achebak, H. et al. Ambient temperature and risk of cardiovascular and respiratory adverse health outcomes: a nationwide cross-sectional study from Spain. Eur. J. Prev. Cardiol., zwae021 (2024).
Makrufardi, F. et al. Extreme weather and asthma: a systematic review and meta-analysis. Eur. Respiratory Rev. 32 (2023).
Belachew, A. B. et al. Effect of cold winters on the risk of new asthma: a case-crossover study in Finland. Occup. Environ. Med. 80, 702–705 (2023).
Google Scholar
Lei, J. et al. Non-optimum ambient temperature may decrease pulmonary function: a longitudinal study with intensively repeated measurements among asthmatic adult patients in 25 Chinese cities. Environ. Int. 164, 107283 (2022).
Google Scholar
Hervás, D., Utrera, J., Hervás-Masip, J. & Hervás, J. García-Marcos, L. can meteorological factors forecast asthma exacerbation in a paediatric population? Allergol. Immunopathol. 43, 32–36 (2015).
Google Scholar
Rau, A. et al. Heat and Cold Wave–related mortality risk among United States veterans with Chronic Obstructive Pulmonary Disease: a case-crossover study. Environ. Health Perspect. 132, 027004 (2024).
Google Scholar
Shi, C., Zhu, J., Wu, Q., Liu, Y. & Hao, Y. Effects of ambient temperature and humidity on COPD mortality in Ganzhou City, China. Int. J. Biometeorol., 1–10 (2024).
Krzyżewska, A. & Wereski, S. Heat waves and frost waves in selected Polish stations against bioclimatic regions background (2000–2010). Przegląd Geofizyczny. 56, 99–109 (2011).
Fishe, J., Zheng, Y., Lyu, T., Bian, J. & Hu, H. Environmental effects on acute exacerbations of respiratory diseases: a real-world big data study. Sci. Total Environ. 806, 150352 (2022).
Google Scholar
Parums, D. V. & Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2023 guidelines for COPD, including COVID-19, Climate Change, and Air Pollution. Med. Sci. Monitor: Int. Med. J. Experimental Clin. Res. 29, e942672–e942671 (2023).
Google Scholar
Ferguson, M. D., Migliaccio, C. & Ward, T. Comparison of how ambient PMc and PM2. 5 influence the inflammatory potential. Inhalation Toxicol. 25, 766–773 (2013).
Google Scholar
Valderrama, A. et al. Particulate matter (PM10) induces in vitro activation of human neutrophils, and lung histopathological alterations in a mouse model. Sci. Rep. 12, 7581 (2022).
Google Scholar
Marín-Palma, D. et al. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 13, 12773 (2023).
Google Scholar
Huang, S. K., Zhang, Q., Qiu, Z. & Chung, K. F. mechanistic impact of outdoor air pollution on asthma and allergic diseases. J. Thorac. Disease. 7, 23 (2015).
Ni, L., Chuang, C. C. & Zuo, L. Fine particulate matter in acute exacerbation of COPD. Front. Physiol. 6, 163183 (2015).
Google Scholar
Ling, S. H. & van Eeden, S. F. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis., 233–243 (2009).
Megaritis, A. et al. Linking climate and air quality over Europe: effects of meteorology on PM 2.5 concentrations. Atmos. Chem. Phys. 14, 10283–10298 (2014).
Google Scholar
Cai, Z., Jiang, F., Chen, J., Jiang, Z. & Wang, X. Weather condition dominates regional PM2. 5 pollutions in the eastern coastal provinces of China during winter. Aerosol Air Qual. Res. 18, 969–980 (2018).
Google Scholar
Guo, L. C. et al. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 215, 195–202 (2016).
Google Scholar
Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).
Google Scholar
D’Amato, G. et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 8, 1–52 (2015).
Google Scholar
Jenkins, C. et al. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur. Respir. J. 39, 38–45 (2012).
Google Scholar
Romaszko, J. et al. Applicability of the universal thermal climate index for predicting the outbreaks of respiratory tract infections: a mathematical modeling approach. Int. J. Biometeorol. 63, 1231–1241 (2019).
Google Scholar
Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 3, e151 (2007).
Google Scholar
Noti, J. D. et al. High humidity leads to loss of infectious influenza virus from simulated coughs. PloS One. 8, e57485 (2013).
Google Scholar
Beasley, R. et al. Viral respiratory tract infection and exacerbations of asthma in adult patients. Thorax 43, 679–683 (1988).
Google Scholar
Wedzicha, J. A. Mechanisms of chronic obstructive pulmonary disease exacerbations. Annals Am. Thorac. Soc. 12, S157–S159 (2015).
Google Scholar
Hoffmann, C. et al. Asthma and COPD exacerbation in relation to outdoor air pollution in the metropolitan area of Berlin, Germany. Respir. Res. 23, 64 (2022).
Google Scholar
Márovics, G. et al. Weather Variability and COPD: a risk estimation identified a vulnerable sub-population in Hungary. vivo 38, 1690–1697 (2024).
Google Scholar
Márovics, G. et al. in Healthcare. 2309 (MDPI).
link